9 research outputs found

    Semi-automated detection and quantification of aortic atheromas from three-dimensional transesophageal echocardiography

    No full text
    Background: Aortic atherosclerosis is a risk factor for cerebrovascular events. Two-dimensional transesophageal echocardiographic quantification of descending aortic plaques is time-consuming and underestimates plaque burden. The aim of this study was to assess the feasibility and accuracy of a novel semiautomated program that uses three-dimensional (3D) transesophageal echocardiography to identify and quantify aortic plaque severity as determined by plaque thickness, volume, and number. The relationship between maximum plaque thickness and volume was also examined. Methods: Descending aortic 3D transesophageal echocardiographic images from 58 patients were analyzed for plaque thickness, volume, and number using semiautomated custom software. The reference standard was manual assessment by an expert reader using 3D multiplanar reconstructions. Agreement and kappa values were calculated to determine the program\u27s accuracy against the reference standard. Correlation and bias were examined using linear regression and Bland-Altman statistics. Pearson\u27s correlation was used to examine the relationship between maximum plaque thickness and volume. Results: Analysis was possible in all patients. Overall agreement for the absolute presence or absence of plaque per patient was 95%. Agreement regarding the number of plaques per patient and plaque severity was high at 95% and 85%, respectively. Plaque volume was slightly underestimated by the program compared with manual measurements. The correlation between plaque thickness and volume was 0.56. Conclusions: The results of this study demonstrate that semiautomated plaque analysis of 3D transesophageal echocardiographic descending aortic data sets is feasible and accurate in determining plaque severity as measured by plaque thickness, volume, and number. This methodology allows the standardization of plaque quantification, which will improve its utility in clinical trials. A greater understanding of the importance of plaque thickness versus volume is needed

    Selective beat averaging to evaluate ventricular repolarization adaptation to deconditioning after 5-days of head-down bed-rest

    Get PDF
    The study of QT/RR relationship is important for the clinical evaluation of possible risk of ventricular tachyarrhythmia. Our aim was to assess the effects of 5-days of head-down (-6 degrees) bed-rest (HDBR) on ventricular repolarization. High fidelity 12-leads Holter ECG was acquired before (PRE), the last day of HDBR (HDT5), and five days after its conclusion (POST). X, Y, Z leads were derived (inverse Dower matrix) and vectorcardiogram computed. Selective beat averaging applied to the night period resulted in averages preceded by the same stable heart rate (for each 10 msec bin amplitude, in the range 900-1200 msec). For each template (i.e., one for each bin), T-wave maximum amplitude (Tmax), T wave area, R-Tapex and R-Tend were computed. Results (in 8 male volunteers) showed that, compared to PRE, at HDT5 both R-Tapex and R-Tend resulted significantly shortened (-5% and -3%, respectively), together with a decrease in T-wave area (-7%), while Tmax was unchanged. At POST, duration parameters showed a trend towards their control values (-1.5% and -3%, respectively) while amplitude parameters resulted restored. Despite the short-term BR, cardiac adaptation to deconditioning affected ventricular repolarization during the night period. © 2012 CCAL
    corecore