680 research outputs found

    Heavily and Fully Modified RNAs Guide Efficient SpyCas9-Mediated Genome Editing [preprint]

    Get PDF
    RNA-based drugs depend on chemical modifications to increase potency and nuclease stability, and to decrease immunogenicity in vivo. Chemical modification will likely improve the guide RNAs involved in CRISPR-Cas9-based therapeutics as well. Cas9 orthologs are RNA-guided microbial effectors that cleave DNA. No studies have yet explored chemical modification at all positions of the crRNA guide and tracrRNA cofactor. Here, we have identified several heavily-modified versions of crRNA and tracrRNA that are more potent than their unmodified counterparts. In addition, we describe fully chemically modified crRNAs and tracrRNAs (containing no 2\u27-OH groups) that are functional in human cells. These designs demonstrate a significant breakthrough for Cas9-based therapeutics since heavily modified RNAs tend to be more stable in vivo (thus increasing potency). We anticipate that our designs will improve the use of Cas9 via RNP and mRNA delivery for in vivo and ex vivo purposes

    Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing

    Get PDF
    RNA-based drugs depend on chemical modifications to increase potency and to decrease immunogenicity in vivo. Chemical modification will likely improve the guide RNAs involved in CRISPR-Cas9-based therapeutics as well. Cas9 orthologs are RNA-guided microbial effectors that cleave DNA. Here, we explore chemical modifications at all positions of the crRNA guide and tracrRNA cofactor. We identify several heavily modified versions of crRNA and tracrRNA that are more potent than their unmodified counterparts. In addition, we describe fully chemically modified crRNAs and tracrRNAs (containing no 2\u27-OH groups) that are functional in human cells. These designs will contribute to Cas9-based therapeutics since heavily modified RNAs tend to be more stable in vivo (thus increasing potency). We anticipate that our designs will improve the use of Cas9 via RNP and mRNA delivery for in vivo and ex vivo purposes

    CRISPR-enhanced human adipocyte \u27browning\u27 as cell therapy for metabolic disease [preprint]

    Get PDF
    Obesity and type 2 diabetes (T2D) are associated with poor tissue responses to insulin [1,2], disturbances in glucose and lipid fluxes [3-5] and comorbidities including steatohepatitis [6] and cardiovascular disease [7,8]. Despite extensive efforts at prevention and treatment [9,10], diabetes afflicts over 400 million people worldwide [11]. Whole body metabolism is regulated by adipose tissue depots [12-14], which include both lipid-storing white adipocytes and less abundant \u27brown\u27 and \u27brite/beige\u27 adipocytes that express thermogenic uncoupling protein UCP1 and secrete factors favorable to metabolic health [15-18]. Application of clustered regularly interspaced short palindromic repeats (CRISPR) gene editing [19,20] to enhance \u27browning\u27 of white adipose tissue is an attractive therapeutic approach to T2D. However, the problems of cell-selective delivery, immunogenicity of CRISPR reagents and long term stability of the modified adipocytes are formidable. To overcome these issues, we developed methods that deliver complexes of SpyCas9 protein and sgRNA ex vivo to disrupt the thermogenesis suppressor gene NRIP1 [21,22] with near 100% efficiency in human or mouse adipocytes. NRIP1 gene disruption at discrete loci strongly ablated NRIP1 protein and upregulated expression of UCP1 and beneficial secreted factors, while residual Cas9 protein and sgRNA were rapidly degraded. Implantation of the CRISPR-enhanced human or mouse brown-like adipocytes into high fat diet fed mice decreased adiposity and liver triglycerides while enhancing glucose tolerance compared to mice implanted with unmodified adipocytes. These findings advance a therapeutic strategy to improve metabolic homeostasis through CRISPR-based genetic modification of human adipocytes without exposure of the recipient to immunogenic Cas9 or delivery vectors

    A genetic screen for components of the mammalian RNA interference pathway in Bloom-deficient mouse embryonic stem cells

    Get PDF
    Genetic screens performed in model organisms have helped identify key components of the RNA interference (RNAi) pathway. Recessive genetic screens have recently become feasible through the use of mouse embryonic stem (ES) cells that are Bloom's syndrome protein (Blm) deficient. Here, we developed and performed a recessive genetic screen to identify components of the mammalian RNAi pathway in Blm-deficient ES cells. Genome-wide mutagenesis using a retroviral gene trap strategy resulted in the isolation of putative homozygous RNAi mutant cells. Candidate clones were confirmed by an independent RNAi-based reporter assay and the causative gene trap integration site was identified using molecular techniques. Our screen identified multiple mutant cell lines of Argonaute 2 (Ago2), a known essential component of the RNAi pathway. This result demonstrates that true RNAi components can be isolated by this screening strategy. Furthermore, Ago2 homozygous mutant ES cells provide a null genetic background to perform mutational analyses of the Ago2 protein. Using genetic rescue, we resolve an important controversy regarding the role of two phenylalanine residues in Ago2 activity

    An Allograft Glioma Model Reveals the Dependence of Aquaporin-4 Expression on the Brain Microenvironment

    Get PDF
    Aquaporin-4 (AQP4), the main water channel of the brain, is highly expressed in animal glioma and human glioblastoma in situ. In contrast, most cultivated glioma cell lines don’t express AQP4, and primary cell cultures of human glioblastoma lose it during the first passages. Accordingly, in C6 cells and RG2 cells, two glioma cell lines of the rat, and in SMA mouse glioma cell lines, we found no AQP4 expression. We confirmed an AQP4 loss in primary human glioblastoma cell cultures after a few passages. RG-2 glioma cells if grafted into the brain developed AQP4 expression. This led us consider the possibility of AQP4 expression depends on brain microenvironment. In previous studies, we observed that the typical morphological conformation of AQP4 as orthogonal arrays of particles (OAP) depended on the extracellular matrix component agrin. In this study, we showed for the first time implanted AQP4 negative glioma cells in animal brain or flank to express AQP4 specifically in the intracerebral gliomas but neither in the extracranial nor in the flank gliomas. AQP4 expression in intracerebral gliomas went along with an OAP loss, compared to normal brain tissue. AQP4 staining in vivo normally is polarized in the astrocytic endfoot membranes at the glia limitans superficialis and perivascularis, but in C6 and RG2 tumors the AQP4 staining is redistributed over the whole glioma cell as in human glioblastoma. In contrast, primary rat or mouse astrocytes in culture did not lose their ability to express AQP4, and they were able to form few OAPs

    Activation of BKCa Channels in Zoledronic Acid-Induced Apoptosis of MDA-MB-231 Breast Cancer Cells

    Get PDF
    BACKGROUND: Zoledronic acid, one of the most potent nitrogen-containing biphosphonates, has been demonstrated to have direct anti-tumor and anti-metastatic properties in breast cancer in vitro and in vivo. In particular, tumor-cell apoptosis has been recognized to play an important role in the treatment of metastatic breast cancer with zoledronic acid. However, the precise mechanisms remain less clear. In the present study, we investigated the specific role of large conductance Ca(2+)-activated potassium (BK(Ca)) channel in zoledronic acid-induced apoptosis of estrogen receptor (ER)-negative MDA-MB-231 breast cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: The action of zoledronic acid on BK(Ca) channel was investigated by whole-cell and cell-attached patch clamp techniques. Cell apoptosis was assessed with immunocytochemistry, analysis of fragmented DNA by agarose gel electrophoresis, and flow cytometry assays. Cell proliferation was investigated by MTT test and immunocytochemistry. In addition, such findings were further confirmed with human embryonic kidney 293 (HEK293) cells which were transfected with functional BK(Ca) α-subunit (hSloα). Our results clearly indicated that zoledronic acid directly increased the activities of BK(Ca) channels, and then activation of BK(Ca) channel by zoledronic acid contributed to induce apoptosis in MDA-MB-231 cells. The possible mechanisms were associated with the elevated level of intracellular Ca(2+) and a concomitant depolarization of mitochondrial membrane potential (Δψm) in MDA-MB-231 cells. CONCLUSIONS: Activation of BK(Ca) channel was here shown to be a novel molecular pathway involved in zoledronic acid-induced apoptosis of MDA-MB-231 cells in vitro

    Making up meanings in a capital city: power, memory and monuments in Berlin

    Get PDF
    Much contemporary writing on cities focuses on their position within wider global networks, so there is a risk of underplaying the significance of other aspects of the urban experience.This paper explores the particular role of Berlin as capital city in the making of the (new) Berliner Republic and the ways in which it is defined (and defines itself) within that Republic. Berlin is the (and often literally the building) site on which a new Germany is being constructed. The making up of the new Berlin is dominated by attempts to reinterpret and reimagine its history: it is a city of memorials and of deliberate absences; of remembering and forgetting, or trying to forget; of reshaping the past as well as trying to build a new future. The juxtapositions of urban experience, the layering of memories and the attempt to imagine a different future come together to define Berlin as a contemporary capital city

    [2,4-13C]β-hydroxybutyrate Metabolism in Astrocytes and C6 Glioblastoma Cells

    Get PDF
    This study was undertaken to determine if the ketogenic diet could be useful for glioblastoma patients. The hypothesis tested was whether glioblastoma cells can metabolize ketone bodies. Cerebellar astrocytes and C6 glioblastoma cells were incubated in glutamine and serum free medium containing [2,4-13C]β-hydroxybutyrate (BHB) with and without glucose. Furthermore, C6 cells were incubated with [1-13C]glucose in the presence and absence of BHB. Cell extracts were analyzed by mass spectrometry and media by 1H magnetic resonance spectroscopy and HPLC. Using [2,4-13C]BHB and [1-13C]glucose it could be shown that C6 cells, in analogy to astrocytes, had efficient mitochondrial activity, evidenced by 13C labeling of glutamate, glutamine and aspartate. However, in the presence of glucose, astrocytes were able to produce and release glutamine, whereas this was not accomplished by the C6 cells, suggesting lack of anaplerosis in the latter. We hypothesize that glioblastoma cells kill neurons by not supplying the necessary glutamine, and by releasing glutamate

    Enriched environment and physical activity reduce microglia and influence the fate of NG2 cells in the amygdala of adult mice

    Get PDF
    Proliferative cells expressing proteoglycan neuron-glia 2 (NG2) are considered to represent parenchymal precursor cells in the adult brain and are thought to differentiate primarily into oligodendrocytes. We have studied cell genesis in the adult amygdala and found that, up to 1 year after the labeling of proliferating cells with bromodeoxyuridine, most proliferating NG2 cells remain NG2 cells, and only a few slowly differentiate into mature oligodendrocytes, as assessed by the expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase. We have detected no signs of neurogenesis but have confirmed the expression of “neuronal” markers such as Doublecortin in NG2 cells. Nestin-expressing NG2 cells in the amygdala show electrophysiological properties known for oligodendrocyte precursor cells in the corpus callosum. Application of the glutamate agonist kainate elicits a “complex” response consisting of a rapid and long-lasting blockade of the resting K+ conductance, a transient cationic current, and a transient increase of an outwardly directed K+ conductance, suggesting the responsiveness of NG2 cells to excitation. Proliferation of NG2 cells increases in response to behavioral stimuli of activity, voluntary wheel running, and environmental enrichment. In addition to reducing the number of newborn microglia, behavioral activity results in a decrease in S100β-expressing newborn NG2 cells in the amygdala. Because S100β expression in NG2 cells ceases with oligodendrocyte maturation, this finding suggests that NG2 cells in the amygdala undergo activity-dependent functional alterations, without resulting in a measurable increase in new mature oligodendrocytes over the time period covered by the present study. The adult amygdala thus shows signs of mixed activity-dependent plasticity: reduced numbers of microglia and, presumably, an altered fate of NG2 cells
    corecore