390 research outputs found
Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: Implications for chemical-induced peripheral sensory neuropathies
Although a variety of industrial chemicals, as well as several chemotherapeutic agents used to treat cancer or HIV, preferentially induce a peripheral sensory neuropathy what remains unclear is why these agents induce a sensory vs. a motor or mixed neuropathy. Previous studies have shown that the endothelial cells that vascularize the dorsal root ganglion (DRG), which houses the primary afferent sensory neurons, are unique in that they have large fenestrations and are permeable to a variety of low and high molecular weight agents. In the present report we used whole-mount preparations, immunohistochemistry, and confocal laser scanning microscopy to show that the cell body-rich area of the L4 mouse DRG has a 7 fold higher density of CD31+ capillaries than cell fiber rich area of the DRG or the distal or proximal aspect of the sciatic nerve. This dense vascularization, coupled with the high permeability of these capillaries, may synergistically contribute, and in part explain, why many potentially neurotoxic agents preferentially accumulate and injure cells within the DRG. Currently, cancer survivors and HIV patients constitute the largest and most rapidly expanding groups that have chemically induced peripheral sensory neuropathy. Understanding the unique aspects of the vascularization of the DRG and closing the endothelial fenestrations of the rich vascular bed of capillaries that vascularize the DRG before intravenous administration of anti-neoplastic or anti-HIV therapies, may offer a mechanism based approach to attenuate these chemically induced peripheral neuropathies in these patients
Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow
We review modeling of astrocyte ion dynamics with a specific focus on the
implications of so-called spatial potassium buffering, where excess potassium
in the extracellular space (ECS) is transported away to prevent pathological
neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for
modeling ion dynamics in astrocytes (and brain tissue in general) is outlined
and used to study such spatial buffering. We next describe how the ion dynamics
of astrocytes may regulate microscopic liquid flow by osmotic effects and how
such microscopic flow can be linked to whole-brain macroscopic flow. We thus
include the key elements in a putative multiscale theory with astrocytes
linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure
A mathematical model of the metabolic and perfusion effects on cortical spreading depression
Cortical spreading depression (CSD) is a slow-moving ionic and metabolic
disturbance that propagates in cortical brain tissue. In addition to massive
cellular depolarization, CSD also involves significant changes in perfusion and
metabolism -- aspects of CSD that had not been modeled and are important to
traumatic brain injury, subarachnoid hemorrhage, stroke, and migraine.
In this study, we develop a mathematical model for CSD where we focus on
modeling the features essential to understanding the implications of
neurovascular coupling during CSD. In our model, the sodium-potassium--ATPase,
mainly responsible for ionic homeostasis and active during CSD, operates at a
rate that is dependent on the supply of oxygen. The supply of oxygen is
determined by modeling blood flow through a lumped vascular tree with an
effective local vessel radius that is controlled by the extracellular potassium
concentration. We show that during CSD, the metabolic demands of the cortex
exceed the physiological limits placed on oxygen delivery, regardless of
vascular constriction or dilation. However, vasoconstriction and vasodilation
play important roles in the propagation of CSD and its recovery. Our model
replicates the qualitative and quantitative behavior of CSD --
vasoconstriction, oxygen depletion, extracellular potassium elevation,
prolonged depolarization -- found in experimental studies.
We predict faster, longer duration CSD in vivo than in vitro due to the
contribution of the vasculature. Our results also help explain some of the
variability of CSD between species and even within the same animal. These
results have clinical and translational implications, as they allow for more
precise in vitro, in vivo, and in silico exploration of a phenomenon broadly
relevant to neurological disease.Comment: 17 pages including 9 figures, accepted by PLoS On
Synesthesia and Migraine: Case Report
<p>Abstract</p> <p>Background</p> <p>Synesthesia is, as visual migraine aura, a common and fascinating perceptual phenomenon. Here we present a unique case with synesthesias exclusively during visual migraine auras.</p> <p>Case presentation</p> <p>A 40-year-old woman with a cyclic mood disorder had suffered from migraine with visual aura for several years. On several occasions she had experienced "mixing of senses" during the aura phase. Staring at strong bright light she could experience intense taste of lemon with flow from the salivary glands.</p> <p>Conclusion</p> <p>Acquired synesthesia, exclusively coincident with migraine aura, gives support to the idea of an anomalous cortical processing underlying the phenomenon.</p
Intervention effects of Ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of Neurotrophin-4 and N-Cadherin
Epilepsy can cause cerebral transient dysfunctions. Ganoderma lucidum spores (GLS), a traditional Chinese medicinal herb, has shown some antiepileptic effects in our previous studies. This was the first study of the effects of GLS on cultured primary hippocampal neurons, treated with Mg2+ free medium. This in vitro model of epileptiform discharge hippocampal neurons allowed us to investigate the anti-epileptic effects and mechanism of GLS activity. Primary hippocampal neurons from <1 day old rats were cultured and their morphologies observed under fluorescence microscope. Neurons were confirmed by immunofluorescent staining of neuron specific enolase (NSE). Sterile method for GLS generation was investigated and serial dilutions of GLS were used to test the maximum non-toxic concentration of GLS on hippocampal neurons. The optimized concentration of GLS of 0.122 mg/ml was identified and used for subsequent analysis. Using the in vitro model, hippocampal neurons were divided into 4 groups for subsequent treatment i) control, ii) model (incubated with Mg2+ free medium for 3 hours), iii) GLS group I (incubated with Mg2+ free medium containing GLS for 3 hours and replaced with normal medium and incubated for 6 hours) and iv) GLS group II (neurons incubated with Mg2+ free medium for 3 hours then replaced with a normal medium containing GLS for 6 hours). Neurotrophin-4 and N-Cadherin protein expression were detected using Western blot. The results showed that the number of normal hippocampal neurons increased and the morphologies of hippocampal neurons were well preserved after GLS treatment. Furthermore, the expression of neurotrophin-4 was significantly increased while the expression of N-Cadherin was decreased in the GLS treated group compared with the model group. This data indicates that GLS may protect hippocampal neurons by promoting neurotrophin-4 expression and inhibiting N-Cadherin expression
Dynamics of epileptiform activity in mouse hippocampal slices
Increase of the extracellular K + concentration mediates seizure-like synchronized activities in vitro and was proposed to be one of the main factors underlying epileptogenesis in some types of seizures in vivo. While underlying biophysical mechanisms clearly involve cell depolarization and overall increase in excitability, it remains unknown what qualitative changes of the spatio-temporal network dynamics occur after extracellular K + increase. In this study, we used multi-electrode recordings from mouse hippocampal slices to explore changes of the network activity during progressive increase of the extracellular K + concentration. Our analysis revealed complex spatio-temporal evolution of epileptiform activity and demonstrated a sequence of state transitions from relatively simple network bursts into complex bursting, with multiple synchronized events within each burst. We describe these transitions as qualitative changes of the state attractors, constructed from experimental data, mediated by elevation of extracellular K + concentration
Potassium modulation of methionine uptake in astrocytes in vitro
Methionine participates in a large variety of metabolic pathways in brain, and its transport may play an important regulatory role. The properties of methionine uptake were examined in a preparation of neonatal rat brain astrocytes. Uptake is linear for 15 minutes, up to 2.5 μM. At steady state conditions, methionine is concentrated 30–50-fold. Measured methionine homoexchange accounts for a significant fraction of uptake at concentrations greater than 10 μM. We recently reported that methionine uptake is decreased by elevations in extracellular K + . Potassium induced efflux cannot account for this apparent effect; and thus for concentrations less than 2.5μM, and for short times of incubation, measured rates of methionine uptake represent unidirectional flux. At extracellular concentrations of K + equal to 6.9 mM, the apparent V max of methionine transport is 182 pmol/min/mg protein, and the K m is 1.3 μM. Where K + is shifted to 11.9 mM, the K m remains unchanged, and the V max is reduced by half.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45429/1/11064_2004_Article_BF00965129.pd
Assimilating Seizure Dynamics
Observability of a dynamical system requires an understanding of its state—the collective values of its variables. However, existing techniques are too limited to measure all but a small fraction of the physical variables and parameters of neuronal networks. We constructed models of the biophysical properties of neuronal membrane, synaptic, and microenvironment dynamics, and incorporated them into a model-based predictor-controller framework from modern control theory. We demonstrate that it is now possible to meaningfully estimate the dynamics of small neuronal networks using as few as a single measured variable. Specifically, we assimilate noisy membrane potential measurements from individual hippocampal neurons to reconstruct the dynamics of networks of these cells, their extracellular microenvironment, and the activities of different neuronal types during seizures. We use reconstruction to account for unmeasured parts of the neuronal system, relating micro-domain metabolic processes to cellular excitability, and validate the reconstruction of cellular dynamical interactions against actual measurements. Data assimilation, the fusing of measurement with computational models, has significant potential to improve the way we observe and understand brain dynamics
Determinants of Functional Coupling between Astrocytes and Respiratory Neurons in the Pre-Bötzinger Complex
Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-astrocyte communication in the pre-Bötzinger Complex (preBötC) of rhythmic slice preparations from neonatal mice. In astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of respiratory neuronal activity into phase-locked astroglial calcium signals. In up to 20% of astrocytes, 2-photon calcium imaging revealed spontaneous calcium fluctuations, although with no correlation to neuronal activity. Calcium signals could be elicited in preBötC astrocytes by metabotropic glutamate receptor activation or after inhibition of glial glutamate uptake. In the latter case, astrocyte calcium elevation preceded a surge of respiratory neuron discharge activity followed by network failure. We conclude that astrocytes do not exhibit respiratory-rhythmic calcium fluctuations when they are able to prevent synaptic glutamate accumulation. Calcium signaling is, however, observed when glutamate transport processes in astrocytes are suppressed or neuronal discharge activity is excessive
- …