37 research outputs found
Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability
Mitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle. Using an experimentally validated computational model of mitochondrial function, we show that complex oscillatory dynamics in key metabolic variables, arising at the “edge” between fully functional and pathological behavior, sets the stage for chaos. Under these conditions, a mild, regular sinusoidal redox forcing perturbation triggers chaotic dynamics with main signature traits such as sensitivity to initial conditions, positive Lyapunov exponents, and strange attractors. At the “edge” mitochondrial chaos is exquisitely sensitive to the antioxidant capacity of matrix Mn superoxide dismutase as well as to the amplitude and frequency of the redox perturbation. These results have potential implications both for mitochondrial signaling determining health maintenance, and pathological transformation, including abnormal cardiac rhythms.publishedVersionKembro, Jackelyn Melissa. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂsicas y Naturales; Argentina.Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentina.Cortassa, Sonia. National Institutes of Health. NIH · NIA Intramural Research Program; Estados Unidos.Lloyd, David. Cardiff University. School of Biosciences 1; Inglaterra.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos
Antibiotic Resistance Pattern of Staphylococcus aureus Strains Isolated from Personnel of Jahrom Hospitals in 2012
Abstract
Background and aim: In recent decades, inappropriate antibiotic therapy has been led to the emergence of strains resistant to methicillin and vancomycin. Since the main source of infection and transmission of Staphylococcus aureus is by hospital staff, the aim of this study was to determine the antimicrobial susceptibility of S.aureus strains isolated from hospital staff of Jahrom.
Undo edits
Methods: In this cross - sectional study, 397 of the anterior nasal samples of medical personnel and hospital services were collected by swab. The identification of S.aureus was determined by biochemical tests and microbiology, and the antibiotic resistances of isolates were determined by disk diffusion method for 13 antibiotics. In this method, the inhibition zone for methicillin-resistant strains was ≤ 10 mm the minimum inhibitory concentrations (MIC) against antibiotic vancomycin, ticoplanin, linezolid and synercid were determined by E-test method.
Results: In the present study, 11.3% of personals carried S. aureus in the nose. Among them, 90% were health care workers and 10% were health service workers. The most sensitivity was observed resistance to Ciprofloxacin, rifampin, linezolid and synercid (91.1%), but the lowest sensitivity was to penicillin (4.7%). of 9 MRSA strains, 1 strain was resistance to vancomycin and 2 strains were resistant to teicoplanin and linezolid.
Conclusion: Because of S. aureus strains isolated from hospital staffs were resistant to most common antibiotics, identification and treatment of health care and health service workers can prevent nosocomial infections.
Key words: Staphylococcu aureus carriers, hospital personnel, antibiotic resistance
A verified solution of friction factor in compression test based on its sample\u27s shape changes
The friction factor is a key input for "barrel compression test" and for a meaningful interpretation of the test data. Despite its widespread use, due to the complexity of the problem, there are very few solutions available for the test, la alone for the friction factor. Extended-Avitzur (EA) model has serious known limitations to calculate the friction factor. To estimate the friction factor more reliably, a closed-form solution of the friction factor has been proposed here. The solution is based on the "Exponential Profile Model" (EPM) and provides an instantaneous value for the friction factor. It simply relies on the sample's initial and deformed dimensions. Unlike existing experimental procedures, the proposed solution integrates the test results and friction factor identification based on a single set of experimental load-displacement-barreling data. Merits of the model and its solution were highlighted and compared to those of the conventional Cylindrical Profile Models (CPM5). A finite element model was developed as the reference to produce pseudo-experimental test data and to verify the presented solution. The deformation data were used in the EPM and the EA model to calculate the friction factors by each model and to compare them with the reference data as the benchmark. Contrary to EA's estimated friction factors, those identified by the EPM were in good agreement with the reference values. Recommendations were provided to identify a deformation zone at which the EPM's friction factor can be estimated meaningfully
Tumor microenvironment: Interactions and therapy
Tumor microenvironment (TME) is a host for a complex network of heterogeneous stromal cells with overlapping or opposing functions depending on the dominant signals within this milieu. Reciprocal paracrine interactions between cancer cells with cells within the tumor stroma often reshape the TME in favor of the promotion of tumor. These complex interactions require more sophisticated approaches for cancer therapy, and, therefore, advancing knowledge about dominant drivers of cancer within the TME is critical for designing therapeutic schemes. This review will provide knowledge about TME architecture, multiple signaling, and cross communications between cells within this milieu, and its targeting for immunotherapy of cancer. © 2018 Wiley Periodicals, Inc
Pentoxifylline improves the survival of spermatogenic cells via oxidative stress suppression and upregulation of PI3K/AKT pathway in mouse model of testicular torsion-detorsion
Testicular torsion-detorsion results in enhanced formation of free radicals which contribute to the pathophysiology of testicular tissue damage. Recent reports have identified protective role of pentoxifylline (PTX) against free radicals. Thus, we determined the protective effect of pentoxifylline against testicular damage in mouse model of testicular torsion-detorsion. Twenty (6 weeks old) male mice were divided into 4 groups of 5 animals each namely: Control (sham operated group), T1 (Torsion-detosion + single dose 100 mg/kg PTX, T2 (torsion-detorsion + 20 mg/kg PTX for 2 weeks and T/D (torsion-detorsion only). Animals in T1, T2 and T/D groups underwent 2 h of testicular torsion with the left testes rotated 720° (clockwisely) followed by 30 min of detorsion. After detorsion, drug administration was done intraperitoneally. The left testes of all the animals were excised on the 35th day after torsion-detortion for histopathological and biochemical assay. Histomorphological analysis of the seminiferous tubules showed that there were significant increase (P 0.05) in testes weight, sertoli, leydig and myoid cells in all groups. IHC results showed significant increase (P < 0.01 or 0.05) in id4 and scp3 protein markers in Control, T1 and T2 compared to T/D. Oxidative stress analysis revealed that Pentoxifylline significantly increased (P < 0.01 or 0.05) the level of SOD, catalase, mRNA expression of akt and pi3k genes but significantly suppress (P < 0.01 or 0.05) MDA and Caspase-3 level in Control, T1 and T2 compared to T/D. Pentoxifylline could be used as an adjunct therapy to surgery in the treatment of torsion-detorsion related testicular injury, However, Further studies are needed to evaluate the effects of pentoxifylline on testicular torsion. © 202