2,543 research outputs found

    Quantum Critical Scaling in a Moderately Doped Antiferromagnet

    Full text link
    Using high temperature expansions for the equal time correlator S(q)S(q) and static susceptibility χ(q)\chi(q) for the t-J model, we present evidence for quantum critical (QC), z ⁣= ⁣1z\!=\!1, behavior at intermediate temperatures in a broad range of t/Jt/J ratio, doping, and temperatures. We find that the dynamical susceptibility is very close to the universal scaling function computable for the asymptotic QC regime, and that the dominant energy scale is temperature. Our results are in excellent agreement with measurements of the spin-echo decay rate, 1/T2G1/T_{\rm 2G}, in La2_2CuO4_4, and provide qualitative understanding of both 1/T11/T_1 and 1/T2G1/T_{\rm 2G} nuclear relaxation rates in doped cuprates.Comment: 11 pages, REVTeX v3.0, PostScript file for 3 figures is attached, UIUC-P-93-07-068. In this revised version, we calculate the scaling functions and thus present new and more direct evidence in favor of our original conclusion

    Pan-squamous genomic profiling stratified by anatomic tumor site and viral association

    Get PDF
    Background: Squamous cell carcinomas (SCC) have diverse anatomic etiologies but may share common genomic biomarkers. We profiled 7,871 unique SCCs across nine anatomic sites to investigate commonality in genomic alterations (GA), tumor mutational burden (TMB), human papillomavirus (HPV) association, and mutational signatures. Methods: Tissue from over 8,100 unique SCC samples originating from nine anatomic sites (anogenital (anus, cervix, penis, vagina, vulva), esophagus, head and neck, lung, and skin) were sequenced by hybrid capture-based comprehensive genomic profiling to evaluate GA and TMB. About 3% of non-cutaneous SCC samples had UV signatures, indicative of potential primary site misdiagnoses, and were filtered from the analysis. Detection of HPV, including high-risk strains 16, 18, 31, 33, and 45, was implemented through de novo assembly of non-human sequencing reads and BLASTn comparison against all viral nucleotide sequences in the NCBI database. Results: The proportion of HPV+ patients by anatomic site varied, with the highest being anal (91%) and cervical (83%). The mutational landscape of each cohort was similar, regardless of anatomic origin, but clustered based on HPV status. The largest differences in GA frequency as stratified by HPV- vs. HPV+ were TP53 (87% vs. 12%), CDKN2A (45% vs. 6%), and PIK3CA (22% vs. 33%). The median TMB in cases originating from HPV-associated sites was similar, regardless of HPV status. Higher median TMB was observed in lung and skin cases, which exhibited significant enrichment of mutational signatures indicative of tobacco- and UV-induced DNA damage, respectively. Conclusions: HPV+ and HPV- SCC populations have distinct genomic profiles and, for the latter, anatomic site is correlated with TMB distribution, secondary to associated carcinogen exposure. As such, biomarkers such as TMB and UV signature can provide unexpected insight into site of origin misdiagnoses and may correlate with benefit from immune checkpoint inhibitors

    The equation of state for two-dimensional hard-sphere gases: Hard-sphere gases as ideal gases with multi-core boundaries

    Full text link
    The equation of state for a two-dimensional hard-sphere gas is difficult to calculate by usual methods. In this paper we develop an approach for calculating the equation of state of hard-sphere gases, both for two- and three-dimensional cases. By regarding a hard-sphere gas as an ideal gas confined in a container with a multi-core (excluded sphere) boundary, we treat the hard-sphere interaction in an interacting gas as the boundary effect on an ideal quantum gas; this enables us to treat an interacting gas as an ideal one. We calculate the equation of state for a three-dimensional hard-sphere gas with spin jj, and compare it with the results obtained by other methods. By this approach the equation of state for a two-dimensional hard-sphere gas can be calculated directly.Comment: 9 pages, 1 figur

    Eta-mesic nuclei in relativistic mean-field theory

    Full text link
    With the eta-nucleon (eta N) interaction Lagrangian deduced from chiral perturbation theory, we study the possible eta-mesic nuclei in the framework of relativistic mean-field theory. The eta single-particle energies are sensitive to the eta N scattering length, and increase monotonically with the nucleon number A. If the scattering length is in the range of a^{eta N}=0.75-1.05 fm and the imaginary potential V_{0}-15 MeV, some discrete states of C, O and Ne eta bound states should be identified in experiments. However, when the scattering length a^{eta N} 30 MeV, no discrete eta meson bound states could be observed in experiments.Comment: 6 page

    Small eta-N scattering lengths favour eta-d and eta-alpha states

    Full text link
    Unstable states of the eta meson and the 3He nucleus predicted using the time delay method were found to be in agreement with a recent claim of eta-mesic 3He states made by the TAPS collaboration. Here, we extend this method to a speculative study of the unstable states occurring in the eta-d and eta-4He elastic scattering. The T-matrix for eta-4He scattering is evaluated within the Finite Rank Approximation (FRA) of few body equations. For the evaluation of time delay in the eta-d case, we use a parameterization of an existing Faddeev calculation and compare the results with those obtained from FRA. With an eta-N scattering length, aηN=(0.42,0.34)a_{\eta N} = (0.42, 0.34) fm, we find an eta-d unstable bound state around -16 MeV, within the Faddeev calculation. A similar state within the FRA is found for a low value of aηNa_{\eta N}, namely, aηN=(0.28,0.19)a_{\eta N} = (0.28, 0.19) fm. The existence of an eta-4He unstable bound state close to threshold is hinted by aηN=(0.28,0.19)a_{\eta N} = (0.28, 0.19) fm, but is ruled out by large scattering lengths.Comment: 21 pages, LaTex, 7 Figure

    Monoclonal Gammopathy of Undetermined Significance Disguised as Chronic Neutrophilic Leukemia

    Get PDF
    We encountered a 60-year-old woman with a medical history of diabetes mellitus, osteoporosis, peripheral vascular disease, and hypertension who had earlier presented at an outside facility with knee pain, which led to a finding of elevated neutrophil count of 35×109/L. Because she was otherwise asymptomatic but continued showing elevated neutrophil levels, she sought a second opinion at our facility. Serum protein immunoelectrophoresis with immunofixation revealed an immunoglobulin A (IgA)-κ monoclonal gammopathy concentration of 1305 mg/dL (normal 80–350 mg/dL) but relatively normal concentrations of IgG of 840 mg/dL (620–1400 mg/dL) and IgM of 36 mg/dL (45–250 mg/dL). Using clonal analysis, we found a polyclonal expression pattern in all cell types analyzed. Comprehensive work-up for multiple myeloma and infectious etiology of neutrophilia was negative. We concluded that our patient’s neutrophilia may have been due to the underlying monoclonal gammopathy. This is the first case in the literature of a patient with monoclonal gammopathy of undetermined significance presenting with chronic neutrophilia, mimicking chronic neutrophilic leukemia (CNL). Patients with CNL have a poor prognosis; therefore, it is important to distinguish diagnostically between CNL and reactive neutrophilia

    Quantum Disordered Regime and Spin Gap in the Cuprate Superconductors

    Full text link
    We discuss the crossover from the quantum critical, z ⁣= ⁣1z\!=\!1, to the quantum disordered regime in high-Tc_c materials in relation to the experimental data on the nuclear relaxation, bulk susceptibility, and inelastic neutron scattering. In our scenario, the spin excitations develop a gap Δ ⁣ ⁣1/ξ\Delta\!\sim\!1/\xi well above Tc_c, which is supplemented by the quasiparticle gap below Tc_c. The above experiments yield consistent estimates for the value of the spin gap, which increases as the correlation length decreases.Comment: 14 pages, REVTeX v3.0, PostScript file for 3 figures is attached, UIUC-P-93-07-06

    Charge and spin density wave ordering transitions in strongly correlated metals

    Full text link
    We study the quantum transition from a strongly correlated metal, with heavy fermionic quasiparticles, to a metal with commensurate charge or spin density wave order. To this end, we introduce and numerically analyze a large dimensionality model of Ising spins in a transverse field, coupled to two species of fermions; the analysis borrows heavily from recent progress in the solution of the Hubbard model in large dimensions. At low energies, the Ising order parameter fluctuations are characterized by the critical exponent zν=1z \nu = 1, while above an energy scale, Γ\Gamma, there is a crossover to zν=1/2z\nu = 1/2 criticality. We show that Γ\Gamma is of the order of the width of the heavy quasiparticle band, and can be made arbitrarily small for a correlated metal close to a Mott-Hubbard insulator. Therefore, such a correlated metal has a significant intermediate energy range of zν=1/2z\nu=1/2 behavior, a single particle spectrum with a narrow quasiparticle band, and well-formed analogs of the lower and upper Hubbard bands; we suggest that these features are intimately related in general.Comment: 14 pages, REVTEX 3.0, 2 postscript figure

    Exponential martingales and changes of measure for counting processes

    Full text link
    We give sufficient criteria for the Dol\'eans-Dade exponential of a stochastic integral with respect to a counting process local martingale to be a true martingale. The criteria are adapted particularly to the case of counting processes and are sufficiently weak to be useful and verifiable, as we illustrate by several examples. In particular, the criteria allow for the construction of for example nonexplosive Hawkes processes as well as counting processes with stochastic intensities depending on diffusion processes
    corecore