6,218 research outputs found
Ferromagnetic phase transition for the spanning-forest model (q \to 0 limit of the Potts model) in three or more dimensions
We present Monte Carlo simulations of the spanning-forest model (q \to 0
limit of the ferromagnetic Potts model) in spatial dimensions d=3,4,5. We show
that, in contrast to the two-dimensional case, the model has a "ferromagnetic"
second-order phase transition at a finite positive value w_c. We present
numerical estimates of w_c and of the thermal and magnetic critical exponents.
We conjecture that the upper critical dimension is 6.Comment: LaTex2e, 4 pages; includes 6 Postscript figures; Version 2 has
expanded title as published in PR
Cluster simulations of loop models on two-dimensional lattices
We develop cluster algorithms for a broad class of loop models on
two-dimensional lattices, including several standard O(n) loop models at n \ge
1. We show that our algorithm has little or no critical slowing-down when 1 \le
n \le 2. We use this algorithm to investigate the honeycomb-lattice O(n) loop
model, for which we determine several new critical exponents, and a
square-lattice O(n) loop model, for which we obtain new information on the
phase diagram.Comment: LaTex2e, 4 pages; includes 1 table and 2 figures. Totally rewritten
in version 2, with new theory and new data. Version 3 as published in PR
Borel summability and Lindstedt series
Resonant motions of integrable systems subject to perturbations may continue
to exist and to cover surfaces with parametric equations admitting a formal
power expansion in the strength of the perturbation. Such series may be,
sometimes, summed via suitable sum rules defining functions of the
perturbation strength: here we find sufficient conditions for the Borel
summability of their sums in the case of two-dimensional rotation vectors with
Diophantine exponent (e. g. with ratio of the two independent
frequencies equal to the golden mean).Comment: 17 pages, 1 figur
Dynamic critical behavior of the Chayes-Machta-Swendsen-Wang algorithm
We study the dynamic critical behavior of the Chayes-Machta dynamics for the
Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang
dynamics for the q-state Potts model to noninteger q, in two and three spatial
dimensions, by Monte Carlo simulation. We show that the Li-Sokal bound z \ge
\alpha/\nu is close to but probably not sharp in d=2, and is far from sharp in
d=3, for all q. The conjecture z \ge \beta/\nu is false (for some values of q)
in both d=2 and d=3.Comment: Revtex4, 4 pages including 4 figure
Tempered Fermions in the Hybrid Monte Carlo Algorithm
Parallel tempering simulates at many quark masses simultaneously, by changing
the mass during the simulation while remaining in equilibrium. The algorithm is
faster than pure HMC if more than one mass is needed, and works better the
smaller the smallest mass is.Comment: 4 pages, 2 figures, Combined proceedings for Lattice 97, Edinburgh
and the International Workshop 'Lattice QCD on Parallel Computers',
University of Tsukuba, Japa
Critical speeding-up in a local dynamics for the random-cluster model
We study the dynamic critical behavior of the local bond-update (Sweeny)
dynamics for the Fortuin-Kasteleyn random-cluster model in dimensions d=2,3, by
Monte Carlo simulation. We show that, for a suitable range of q values, the
global observable S_2 exhibits "critical speeding-up": it decorrelates well on
time scales much less than one sweep, so that the integrated autocorrelation
time tends to zero as the critical point is approached. We also show that the
dynamic critical exponent z_{exp} is very close (possibly equal) to the
rigorous lower bound \alpha/\nu, and quite possibly smaller than the
corresponding exponent for the Chayes-Machta-Swendsen-Wang cluster dynamics.Comment: LaTex2e/revtex4, 4 pages, includes 5 figure
Renormalised four-point coupling constant in the three-dimensional O(N) model with N=0
We simulate self-avoiding walks on a cubic lattice and determine the second
virial coefficient for walks of different lengths. This allows us to determine
the critical value of the renormalized four-point coupling constant in the
three-dimensional N-vector universality class for N=0. We obtain g* =
1.4005(5), where g is normalized so that the three-dimensional
field-theoretical beta-function behaves as \beta(g) = - g + g^2 for small g. As
a byproduct, we also obtain precise estimates of the interpenetration ratio
Psi*, Psi* = 0.24685(11), and of the exponent \nu, \nu = 0.5876(2).Comment: 16 page
- …