25,550 research outputs found

    Chromatic roots are dense in the whole complex plane

    Get PDF
    I show that the zeros of the chromatic polynomials P-G(q) for the generalized theta graphs Theta((s.p)) are taken together, dense in the whole complex plane with the possible exception of the disc \q - l\ < l. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) Z(G)(q,upsilon) outside the disc \q + upsilon\ < \upsilon\. An immediate corollary is that the chromatic roots of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha-Kahane-Weiss theorem oil the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof

    Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions

    Get PDF
    I show that there exist universal constants C(r)<C(r) < \infty such that, for all loopless graphs GG of maximum degree r\le r, the zeros (real or complex) of the chromatic polynomial PG(q)P_G(q) lie in the disc q<C(r)|q| < C(r). Furthermore, C(r)7.963906...rC(r) \le 7.963906... r. This result is a corollary of a more general result on the zeros of the Potts-model partition function ZG(q,ve)Z_G(q, {v_e}) in the complex antiferromagnetic regime 1+ve1|1 + v_e| \le 1. The proof is based on a transformation of the Whitney-Tutte-Fortuin-Kasteleyn representation of ZG(q,ve)Z_G(q, {v_e}) to a polymer gas, followed by verification of the Dobrushin-Koteck\'y-Preiss condition for nonvanishing of a polymer-model partition function. I also show that, for all loopless graphs GG of second-largest degree r\le r, the zeros of PG(q)P_G(q) lie in the disc q<C(r)+1|q| < C(r) + 1. Along the way, I give a simple proof of a generalized (multivariate) Brown-Colbourn conjecture on the zeros of the reliability polynomial for the special case of series-parallel graphs.Comment: 47 pages (LaTeX). Revised version contains slightly simplified proofs of Propositions 4.2 and 4.5. Version 3 fixes a silly error in my proof of Proposition 4.1, and adds related discussion. To appear in Combinatorics, Probability & Computin

    Chromatic roots are dense in the whole complex plane

    Get PDF
    I show that the zeros of the chromatic polynomials P_G(q) for the generalized theta graphs \Theta^{(s,p)} are, taken together, dense in the whole complex plane with the possible exception of the disc |q-1| < 1. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) Z_G(q,v) outside the disc |q+v| < |v|. An immediate corollary is that the chromatic zeros of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha-Kahane-Weiss theorem on the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof.Comment: LaTeX2e, 53 pages. Version 2 includes a new Appendix B. Version 3 adds a new Theorem 1.4 and a new Section 5, and makes several small improvements. To appear in Combinatorics, Probability & Computin

    The Euler and Springer numbers as moment sequences

    Full text link
    I study the sequences of Euler and Springer numbers from the point of view of the classical moment problem.Comment: LaTeX2e, 30 pages. Version 2 contains some small clarifications suggested by a referee. Version 3 contains new footnotes 9 and 10. To appear in Expositiones Mathematica

    The falling raindrop, revisited

    Full text link
    I reconsider the problem of a raindrop falling through mist, collecting mass, and generalize it to allow an arbitrary power-law form for the accretion rate. I show that the coupled differential equations can be solved by the simple trick of temporarily eliminating time (t) in favor of the raindrop's mass (m) as the independent variableComment: LaTex2e/revtex4, 6 page

    A really simple elementary proof of the uniform boundedness theorem

    Full text link
    I give a proof of the uniform boundedness theorem that is elementary (i.e. does not use any version of the Baire category theorem) and also extremely simple.Comment: LaTex2e, 5 pages. Version 2 improves the exposition by isolating the key lemma. To appear in the American Mathematical Monthl
    corecore