1,018 research outputs found
Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenases
Hydrogenases are efficient biocatalysts for H2 production and oxidation with various potential biotechnological applications.[NiFe]-class hydrogenases are highly active in both production and oxidation processes—albeit primarily biased to the latter—but suffer from being sensitive to O2.[NiFeSe] hydrogenases are a subclass of [NiFe] hydrogenases with, usually, an increased insensitivity to aerobic environments. In this study we aim to understand the structural causes of the low sensitivity of a [NiFeSe]-hydrogenase, when compared with a [NiFe] class enzyme, by studying the diffusion of O2. To unravel the differences between the two enzymes, we used computational methods comprising Molecular Dynamics simulations with explicit O2 and Implicit Ligand Sampling methodologies. With the latter, we were able to map the free energy landscapes for O2 permeation in both enzymes. We derived pathways from these energy landscapes and selected the kinetically more relevant ones with reactive flux analysis using transition path theory. These studies evidence the existence of quite different pathways in both enzymes and predict a lower permeation efficiency for O2 in the case of the [NiFeSe]-hydrogenase when compared with the [NiFe] enzyme. These differences can explain the experimentally observed lower inhibition by O2 on [NiFeSe]-hydrogenases, when compared with [NiFe]-hydrogenases. A comprehensive map of the residues lining the most important O2 pathways in both enzymes is also presented.publishersversionpublishe
Recommended from our members
Experimental and numerical investigations of the optical and thermal aspects of a PCM-glazed unit
This paper reports on the thermal and optical characterisation of PCM (phase change material) RT27 using the T-history method and spectrophotometry principles, respectively, and the experimental and numerical performance evaluation of a PCM-glazed unit. Various relationships describing the variations in the extinction, scattering and absorption coefficients within the phase change region were developed, and were validated in a numerical CFD model. The results show that: (i) during rapid phase changes, the transmittance spectra from the PCM are unstable, while under stable conditions visible transmittance values of 90% and 40% are obtained for the liquid and phases, respectively; (ii) the radiation scattering effects are dominant in the solid phase of the PCM, while radiation absorption dominates in the liquid phase; (iii) the optical/radiation performance of PCM can be successfully modelled using the liquid fraction term as the main variable; (iv) the addition of PCM improves the thermal mass of the unit during phase change, but risks of overheating may be a significant factor after the PCM has melted; (v) although the day-lighting aspects of PCM-glazed units are favourable, the change in appearance as the PCM changes phase may be a limiting factor in PCM-glazed units
Search for lepton-flavor violation at HERA
A search for lepton-flavor-violating interactions and has been performed with the ZEUS detector using the entire HERA I
data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data
were taken at center-of-mass energies, , of 300 and 318 GeV. No
evidence of lepton-flavor violation was found, and constraints were derived on
leptoquarks (LQs) that could mediate such interactions. For LQ masses below
, limits were set on , where
is the coupling of the LQ to an electron and a
first-generation quark , and is the branching ratio of
the LQ to the final-state lepton ( or ) and a quark . For
LQ masses much larger than , limits were set on the four-fermion
interaction term for LQs that couple to an electron and a quark
and to a lepton and a quark , where and are
quark generation indices. Some of the limits are also applicable to
lepton-flavor-violating processes mediated by squarks in -Parity-violating
supersymmetric models. In some cases, especially when a higher-generation quark
is involved and for the process , the ZEUS limits are the most
stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig.
6) adde
Multijet production in neutral current deep inelastic scattering at HERA and determination of alpha_s
Multijet production rates in neutral current deep inelastic scattering have
been measured in the range of exchanged boson virtualities 10 < Q2 < 5000 GeV2.
The data were taken at the ep collider HERA with centre-of-mass energy sqrt(s)
= 318 GeV using the ZEUS detector and correspond to an integrated luminosity of
82.2 pb-1. Jets were identified in the Breit frame using the k_T cluster
algorithm in the longitudinally invariant inclusive mode. Measurements of
differential dijet and trijet cross sections are presented as functions of jet
transverse energy E_{T,B}{jet}, pseudorapidity eta_{LAB}{jet} and Q2 with
E_{T,B}{jet} > 5 GeV and -1 < eta_{LAB}{jet} < 2.5. Next-to-leading-order QCD
calculations describe the data well. The value of the strong coupling constant
alpha_s(M_Z), determined from the ratio of the trijet to dijet cross sections,
is alpha_s(M_Z) = 0.1179 pm 0.0013(stat.) {+0.0028}_{-0.0046}(exp.)
{+0.0064}_{-0.0046}(th.)Comment: 22 pages, 5 figure
Measurement of (anti)deuteron and (anti)proton production in DIS at HERA
The first observation of (anti)deuterons in deep inelastic scattering at HERA
has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV
using an integrated luminosity of 120 pb-1. The measurement was performed in
the central rapidity region for transverse momentum per unit of mass in the
range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in
terms of the coalescence model. The (anti)deuteron production yield is smaller
than the (anti)proton yield by approximately three orders of magnitude,
consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
Photoproduction of mesons associated with a leading neutron
The photoproduction of mesons associated with a leading
neutron has been observed with the ZEUS detector in collisions at HERA
using an integrated luminosity of 80 pb. The neutron carries a large
fraction, {}, of the incoming proton beam energy and is detected at
very small production angles, { mrad}, an indication of
peripheral scattering. The meson is centrally produced with
pseudorapidity {
GeV}, which is large compared to the average transverse momentum of the neutron
of 0.22 GeV. The ratio of neutron-tagged to inclusive production is
in the photon-proton
center-of-mass energy range { GeV}. The data suggest that the
presence of a hard scale enhances the fraction of events with a leading neutron
in the final state.Comment: 28 pages, 4 figures, 2 table
Measurement of beauty production in deep inelastic scattering at HERA
The beauty production cross section for deep inelastic scattering events with
at least one hard jet in the Breit frame together with a muon has been
measured, for photon virtualities Q^2 > 2 GeV^2, with the ZEUS detector at HERA
using integrated luminosity of 72 pb^-1. The total visible cross section is
sigma_b-bbar (ep -> e jet mu X) = 40.9 +- 5.7 (stat.) +6.0 -4.4 (syst.) pb. The
next-to-leading order QCD prediction lies about 2.5 standard deviations below
the data. The differential cross sections are in general consistent with the
NLO QCD predictions; however at low values of Q^2, Bjorken x, and muon
transverse momentum, and high values of jet transverse energy and muon
pseudorapidity, the prediction is about two standard deviations below the data.Comment: 18 pages, 4 figure
- …