2,197 research outputs found

    The anamorphic state of Leveillula taurica recorded on Cleome spinosa in north-eastern Brazil

    Get PDF
    The anamorphic state of Leveillula taurica was found causing a powdery mildew disease on Cleome spinosa in north-eastern Brazil. Its chasmothecial state was not observed on the collected samples. The fungus is illustrated and described. This report represents the first record of this fungus on Cleome spinosa in Brazil

    Saccharomyces cerevisiae mutants affected in vacuole assembly or vacuolar H+-ATPase are hypersensitive to lead (Pb) toxicity

    Get PDF
    Lead is an important environmental pollutant. The role of vacuole, in Pb detoxification, was studied using a vacuolar protein sorting mutant strain (vps16Δ), belonging to class C mutants. Cells disrupted in VPS16 gene, did not display a detectable vacuolar-like structure. Based on the loss of cell proliferation capacity, it was found that cells from vps16Δ mutant exhibited a hypersensitivity to Pb-induced toxicity, compared to wild type (WT) strain. The function of vacuolar H+-ATPase (V-ATPase), in Pb detoxification, was evaluated using mutants with structurally normal vacuoles but defective in subunits of catalytic (vma1Δ or vma2Δ) or membrane domain (vph1Δ or vma3Δ) of V-ATPase. All mutants tested, lacking a functional V-ATPase, displayed an increased susceptibility to Pb, comparatively to cells from WT strain. Modification of vacuolar morphology, in Pb-exposed cells, was visualized using a Vma2p-GFP strain. The treatment of yeast cells with Pb originated the fusion of the medium size vacuolar lobes into one enlarged vacuole. In conclusion, it was found that vacuole plays an important role in the detoxification of Pb in Saccharomyces cerevisiae; in addition, a functional V-ATPase was required for Pb compartmentalization.The authors thank the Fundacao para a Ciencia e a Tecnologia (FCT) through the Portuguese Government for their financial support of this work through the grant PEST-OE/EQB/LA0023/2011 to IBB

    Myths and Facts About Static Application Security Testing Tools: An Action Research at Telenor Digital

    Get PDF
    It is claimed that integrating agile and security in practice is challenging. There is the notion that security is a heavy process, requires expertise, and consumes developers’ time. These contrast with the agile vision. Regardless of these challenges, it is important for organizations to address security within their agile processes since critical assets must be protected against attacks. One way is to integrate tools that could help to identify security weaknesses during implementation and suggest methods to refactor them. We used quantitative and qualitative approaches to investigate the efficiency of the tools and what they mean to the actual users (i.e. developers) at Telenor Digital. Our findings, although not surprising, show that several barriers exist both in terms of tool’s performance and developers’ perceptions. We suggest practical ways for improvement.publishedVersio

    A large-scale study of a poultry trading network in Bangladesh: implications for control and surveillance of avian influenza viruses

    Get PDF
    Since its first report in 2007, avian influenza (AI) has been endemic in Bangladesh. While live poultry marketing is widespread throughout the country and known to influence AI dissemination and persistence, trading patterns have not been described. The aim of this study is to assess poultry trading practices and features of the poultry trading networks which could promote AI spread, and their potential implications for disease control and surveillance. Data on poultry trading practices was collected from 849 poultry traders during a cross-sectional survey in 138 live bird markets (LBMs) across 17 different districts of Bangladesh. The quantity and origins of traded poultry were assessed for each poultry type in surveyed LBMs. The network of contacts between farms and LBMs resulting from commercial movements of live poultry was constructed to assess its connectivity and to identify the key premises influencing it

    Evaluation of the role of glutathione in the lead-induced toxicity in Saccharomyces cerevisiae

    Get PDF
    The effect of intracellular reduced glutathione (GSH) in the lead stress response of Saccharomyces cerevisiae was investigated. Yeast cells exposed to Pb, for 3 h, lost the cell proliferation capacity (viability) and decreased intracellular GSH level. The Pb-induced loss of cell viability was compared among yeast cells deficient in GSH1 (∆gsh1) or GSH2 (∆gsh2) genes and wild-type (WT) cells. When exposed to Pb, ∆gsh1 and ∆gsh2 cells did not display an increased loss of viability, compared with WT cells. However, the depletion of cellular thiols, including GSH, by treatment of WT cells with iodoacetamide (an alkylating agent, which binds covalently to thiol group), increased the loss of viability in Pb-treated cells. In contrast, GSH enrichment, due to the incubation of WT cells with amino acids mixture constituting GSH (l-glutamic acid, l-cysteine and glycine), reduced the Pb-induced loss of proliferation capacity. The obtained results suggest that intracellular GSH is involved in the defence against the Pb-induced toxicity; however, at physiological concentration, GSH seems not to be sufficient to prevent the Pb-induced loss of cell viability

    Genomic analysis of male puberty timing highlights shared genetic basis with hair colour and lifespan

    Get PDF
    The timing of puberty is highly variable and is associated with long-term health outcomes. To date, understanding of the genetic control of puberty timing is based largely on studies in women. Here, we report a multi-trait genome-wide association study for male puberty timing with an effective sample size of 205,354 men. We find moderately strong genomic correlation in puberty timing between sexes (rg = 0.68) and identify 76 independent signals for male puberty timing. Implicated mechanisms include an unexpected link between puberty timing and natural hair colour, possibly reflecting common effects of pituitary hormones on puberty and pigmentation. Earlier male puberty timing is genetically correlated with several adverse health outcomes and Mendelian randomization analyses show a genetic association between male puberty timing and shorter lifespan. These findings highlight the relationships between puberty timing and health outcomes, and demonstrate the value of genetic studies of puberty timing in both sexes

    Genomic analysis of male puberty timing highlights shared genetic basis with hair colour and lifespan

    Get PDF
    The timing of puberty is highly variable and is associated with long-term health outcomes. To date, understanding of the genetic control of puberty timing is based largely on studies in women. Here, we report a multi-trait genome-wide association study for male puberty timing with an effective sample size of 205,354 men. We find moderately strong genomic correlation in puberty timing between sexes (rg = 0.68) and identify 76 independent signals for male puberty timing. Implicated mechanisms include an unexpected link between puberty timing and natural hair colour, possibly reflecting common effects of pituitary hormones on puberty and pigmentation. Earlier male puberty timing is genetically correlated with several adverse health outcomes and Mendelian randomization analyses show a genetic association between male puberty timing and shorter lifespan. These findings highlight the relationships between puberty timing and health outcomes, and demonstrate the value of genetic studies of puberty timing in both sexes

    Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases

    Get PDF
    Background: The secondary structure and complexity of mRNA influences its accessibility to regulatory molecules (proteins, micro-RNAs), its stability and its level of expression. The mobile elements of the RNA sequence, the wobble bases, are expected to regulate the formation of structures encompassing coding sequences. Results: The sequence/folding energy (FE) relationship was studied by statistical, bioinformatic methods in 90 CDS containing 26,370 codons. I found that the FE (dG) associated with coding sequences is significant and negative (407 kcal/1000 bases, mean +/- S.E.M.) indicating that these sequences are able to form structures. However, the FE has only a small free component, less than 10% of the total. The contribution of the 1st and 3rd codon bases to the FE is larger than the contribution of the 2nd (central) bases. It is possible to achieve a ~ 4-fold change in FE by altering the wobble bases in synonymous codons. The sequence/FE relationship can be described with a simple algorithm, and the total FE can be predicted solely from the sequence composition of the nucleic acid. The contributions of different synonymous codons to the FE are additive and one codon cannot replace another. The accumulated contributions of synonymous codons of an amino acid to the total folding energy of an mRNA is strongly correlated to the relative amount of that amino acid in the translated protein. Conclusion: Synonymous codons are not interchangable with regard to their role in determining the mRNA FE and the relative amounts of amino acids in the translated protein, even if they are indistinguishable in respect of amino acid coding.Comment: 14 pages including 6 figures and 1 tabl

    The geography of recent genetic ancestry across Europe

    Get PDF
    The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of recent genealogical ancestry over the past three thousand years at a continental scale. We detected 1.9 million shared genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 10-50 genetic common ancestors from the last 1500 years, and upwards of 500 genetic ancestors from the previous 1000 years. These numbers drop off exponentially with geographic distance, but since genetic ancestry is rare, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1000 years. There is substantial regional variation in the number of shared genetic ancestors: especially high numbers of common ancestors between many eastern populations likely date to the Slavic and/or Hunnic expansions, while much lower levels of common ancestry in the Italian and Iberian peninsulas may indicate weaker demographic effects of Germanic expansions into these areas and/or more stably structured populations. Recent shared ancestry in modern Europeans is ubiquitous, and clearly shows the impact of both small-scale migration and large historical events. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world.Comment: Full size figures available from http://www.eve.ucdavis.edu/~plralph/research.html; or html version at http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm

    A structurally distinct TGF-β mimic from an intestinal helminth parasite potently induces regulatory T cells

    Get PDF
    Helminth parasites defy immune exclusion through sophisticated evasion mechanisms, including activation of host immunosuppressive regulatory T (Treg) cells. The mouse parasite Heligmosomoides polygyrus can expand the host Treg population by secreting products that activate TGF-β signalling, but the identity of the active molecule is unknown. Here we identify an H. polygyrus TGF-β mimic (Hp-TGM) that replicates the biological and functional properties of TGF-β, including binding to mammalian TGF-β receptors and inducing mouse and human Foxp3+ Treg cells. Hp-TGM has no homology with mammalian TGF-β or other members of the TGF-β family, but is a member of the complement control protein superfamily. Thus, our data indicate that through convergent evolution, the parasite has acquired a protein with cytokine-like function that is able to exploit an endogenous pathway of immunoregulation in the host
    • …
    corecore