28,394 research outputs found
Shock tube measurements of growth constants in the branched-chain ethane-carbon monoxide-oxygen system
Exponential free radical growth constants have been measured for ethane carbon monoxide oxygen mixtures by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 1700 K. The data were analyzed using an ethane oxidation mechanism involving seven elementary reaction steps. Calculated growth constants were close to experimental values at lower temperatures, up to about 1400 K, but at higher temperatures computed growth constants were considerably smaller than experiment. In attempts to explain these results additional branching reactions were added to the mechanism. However, these additional reactions did not appreciably change calculated growth constants
Conceptual design of single turbofan engine powered light aircraft
The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented
A New Template Family For The Detection Of Gravitational Waves From Comparable Mass Black Hole Binaries
In order to improve the phasing of the comparable-mass waveform as we
approach the last stable orbit for a system, various re-summation methods have
been used to improve the standard post-Newtonian waveforms. In this work we
present a new family of templates for the detection of gravitational waves from
the inspiral of two comparable-mass black hole binaries. These new adiabatic
templates are based on re-expressing the derivative of the binding energy and
the gravitational wave flux functions in terms of shifted Chebyshev
polynomials. The Chebyshev polynomials are a useful tool in numerical methods
as they display the fastest convergence of any of the orthogonal polynomials.
In this case they are also particularly useful as they eliminate one of the
features that plagues the post-Newtonian expansion. The Chebyshev binding
energy now has information at all post-Newtonian orders, compared to the
post-Newtonian templates which only have information at full integer orders. In
this work, we compare both the post-Newtonian and Chebyshev templates against a
fiducially exact waveform. This waveform is constructed from a hybrid method of
using the test-mass results combined with the mass dependent parts of the
post-Newtonian expansions for the binding energy and flux functions. Our
results show that the Chebyshev templates achieve extremely high fitting
factors at all PN orders and provide excellent parameter extraction. We also
show that this new template family has a faster Cauchy convergence, gives a
better prediction of the position of the Last Stable Orbit and in general
recovers higher Signal-to-Noise ratios than the post-Newtonian templates.Comment: Final published version. Accepted for publication in Phys. Rev.
Spin Dynamics at Very Low Temperature in Spin Ice DyTiO
We have performed AC susceptibility and DC magnetic relaxation measurements
on the spin ice system DyTiO down to 0.08 K. The relaxation time of
the magnetization has been estimated below 2 K down to 0.08 K. The spin
dynamics of DyTiO is well described by using two relaxation times
( (short time) and (long time)). Both and increase on cooling. Assuming the Arrhenius law in the
temperature range 0.5-1 K, we obtained an energy barrier of 9 K. Below 0.5 K,
both and show a clear deviation from the thermal
activated dynamics toward temperature independent relaxation, suggesting a
quantum dynamics.Comment: 4 page
Contracted Representation of Yang's Space-Time Algebra and Buniy-Hsu-Zee's Discrete Space-Time
Motivated by the recent proposition by Buniy, Hsu and Zee with respect to
discrete space-time and finite spatial degrees of freedom of our physical world
with a short- and a long-distance scales, and we reconsider the
Lorentz-covariant Yang's quantized space-time algebra (YSTA), which is
intrinsically equipped with such two kinds of scale parameters, and
. In accordance with their proposition, we find the so-called contracted
representation of YSTA with finite spatial degrees of freedom associated with
the ratio , which gives a possibility of the divergence-free
noncommutative field theory on YSTA. The canonical commutation relations
familiar in the ordinary quantum mechanics appear as the cooperative
Inonu-Wigner's contraction limit of YSTA, and $R \to \infty.
Influence of nanostructure and nitrogen content on the optical and electrical properties of reactively sputtered FeSiAl(N) films
In this study, the optical properties and dc resistivity of a series of FeSiAl(N) films reactively sputtered with different partial pressures of N were investigated. Spectroscopic ellipsometry was used to measure the real and imaginary parts of the complex dielectric functions. There is a distinct micro/nanostructural transition from single-phase columnar body-centered-cubic (bcc) grains for partial pressure (pp) of nitrogen in sputtering gas â©œ4% to a two-phase nanocomposite of equiaxed bcc nanograins in an amorphous matrix for filmsdeposited with â©Ÿ5% pp N. To assess the effect of surface oxidation on the optical properties, optical measurements were repeated on the 2 and 5% pp N films (representative of the two different types of films with different structures) after they were sputter etched in situ while performing depth profiling of the chemical composition using x-ray photoelectron spectroscopy. The low-nitrogen films(â©œ4%âppâN) showed a dielectric function typical of a metal whose charge carrier contribution can be described by a classical free electron Drude model. The nanostructured films(â©Ÿ5%âppâN) showed a positive real part of the dielectric functionΔ1and no evidence of free-carrier plasmon excitation. The optical conductivity decreased and the dc resistivity increased by about a factor of 2.5 as the film structure changed from a single phase columnar structure to the two-phase material that consisted of nanograins in an amorphous matrix
Developing autonomous learning in first year university students using perspectives from positive psychology
Autonomous learning is a commonly occurring learning outcome from university study, and it is argued that students require confidence in their own abilities to achieve this. Using approaches from positive psychology, this study aimed to develop confidence in firstâyear university students to facilitate autonomous learning. Psychological character strengths were assessed in 214 students on day one at university. Two weeks later their top three strengths were given to them in study skills modules as part of a psychoâeducational intervention designed to increase their selfâefficacy and selfâesteem. The impact of the intervention was assessed against a control group of 40 students who had not received the intervention. The results suggested that students were more confident after the intervention, and that levels of autonomous learning increased significantly compared to the controls. Character strengths were found to be associated with selfâefficacy, selfâesteem and autonomous learning in ways that were theoretically meaningful
Photon deflection by a Coulomb field in noncommutative QED
In noncommutative QED photons present self-interactions in the form of triple
and quartic interactions. The triple interaction implies that, even though the
photon is electrically neutral, it will deflect when in the presence of an
electromagnetic field. If detected, such deflection would be an undoubted
signal of noncommutative space-time. In this work we derive the general
expression for the deflection of a photon by any electromagnetic field. As an
application we consider the case of the deflection of a photon by an external
static Coulomb field.Comment: 07 pages, some typos corrected, accepted for publication in JP
The Antiferromagnetic Band Structure of La2CuO4 Revisited
Using the Becke-3-LYP functional, we have performed band structure
calculations on the high temperature superconductor parent compound, La2CuO4.
Under the restricted spin formalism (rho(alpha) equal to rho(beta)), the
R-B3LYP band structure agrees well with the standard LDA band structure. It is
metallic with a single Cu x2-y2/O p(sigma) band crossing the Fermi level. Under
the unrestricted spin formalism (rho(alpha) not equal to rho(beta)), the UB3LYP
band structure has a spin polarized antiferromagnetic solution with a band gap
of 2.0 eV, agreeing well with experiment. This state is 1.0 eV (per formula
unit) lower than that calculated from the R-B3LYP. The apparent high energy of
the spin restricted state is attributed to an overestimate of on-site Coulomb
repulsion which is corrected in the unrestricted spin calculations. The
stabilization of the total energy with spin polarization arises primarily from
the stabilization of the x2-y2 band, such that the character of the eigenstates
at the top of the valence band in the antiferromagnetic state becomes a strong
mixture of Cu x2-y2/O p(sigma) and Cu z2/O' p(z). Since the Hohenberg-Kohn
theorem requires the spin restricted and spin unrestricted calculations give
exactly the same ground state energy and total density for the exact
functionals, this large disparity in energy reflects the inadequacy of current
functionals for describing the cuprates. This calls into question the use of
band structures based on current restricted spin density functionals (including
LDA) as a basis for single band theories of superconductivity in these
materials.Comment: 13 pages, 8 figures, to appear in Phys. Rev. B, for more information
see http://www.firstprinciples.co
- âŠ