48 research outputs found

    Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal.

    Get PDF
    This is the author accepted manuscript. The final version is available from AAAS via http://dx.doi.org/10.1126/science.aac6383Detailed geodetic imaging of earthquake ruptures enhances our understanding of earthquake physics and associated ground shaking. The 25 April 2015 moment magnitude 7.8 earthquake in Gorkha, Nepal was the first large continental megathrust rupture to have occurred beneath a high-rate (5-hertz) Global Positioning System (GPS) network. We used GPS and interferometric synthetic aperture radar data to model the earthquake rupture as a slip pulse ~20 kilometers in width, ~6 seconds in duration, and with a peak sliding velocity of 1.1 meters per second, which propagated toward the Kathmandu basin at ~3.3 kilometers per second over ~140 kilometers. The smooth slip onset, indicating a large (~5-meter) slip-weakening distance, caused moderate ground shaking at high frequencies (>1 hertz; peak ground acceleration, ~16% of Earth's gravity) and minimized damage to vernacular dwellings. Whole-basin resonance at a period of 4 to 5 seconds caused the collapse of tall structures, including cultural artifacts.The Nepal Geodetic Array was funded by internal funding to JPA from Caltech and DASE and by the Gordon and Betty Moore Foundation, through Grant GBMF 423.01 to the Caltech Tectonics Observatory and was maintained thanks to NSF Grant EAR 13-5136. Andrew Miner and the PAcific Northwest Geodetic Array (PANGA) at Central Washington University are thanked for technical assistance with the construction and operation of the Tribhuvan University-CWU network. Additional funding for the TU-CWU network came from United Nations Development Programme and Nepal Academy for Science and Technology. The high rate data were recovered thanks to a rapid intervention funded by NASA (US) and the Department of Foreign International Development (UK). We thank Trimble Navigation Ltd and the Vaidya family for supporting the rapid response as well. The accelerometer record at KATNP was provided by USGS. Research at UC Berkeley was funded by the Gordon and Betty Moore Foundation through grant GBMF 3024. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The GPS data were processed by ARIA (JPL) and the Scripps Orbit and Permanent Array Center. The effort at the Scripps Institution of Oceanography was funded by NASA grants NNX14AQ53G and NNX14AT33G. ALOS-2 data were provided under JAXA (Japan) PI Investigations 1148 and 1413. JPA thanks the Royal Society for support. We thank Susan Hough, Doug Given, Irving Flores and Jim Luetgert for contribution to the installation of this station

    Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake

    Get PDF
    Large earthquakes are thought to release strain on previously locked faults. However, the details of how earthquakes are initiated, grow and terminate in relation to pre-seismically locked and creeping patches is unclear ^1-4. The 2015 Mw 7.8 Gorkha, Nepal earthquake occurred close to Kathmandu in a region where the prior pattern of fault locking is well documented ^5. Here we analyze this event using seismological records measured at teleseismic distances and Synthetic Aperture Radar imagery. We show that the earthquake originated northwest of Kathmandu within a cluster of background seismicity that fringes the bottom of the locked portion of the Main Himalayan Thrust fault (MHT). The rupture propagated eastwards for about 140 km, unzipping the lower edge of the locked portion of the fault. High-frequency seismic waves radiated continuously as the slip pulse propagated at about 2.8 km s-1 along this zone of presumably high and heterogeneous pre-¬seismic stress at the seismic-aseismic transition. Eastward unzipping of the fault resumed during the Mw 7.3 aftershock on May 12. The transfer of stress to neighbouring regions during the Gorkha earthquake should facilitate future rupture of the areas of the MHT adjacent and up-dip of the Gorkha earthquake rupture.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ngeo251

    Air pollution from household solid fuel combustion in India: an overview of exposure and health related information to inform health research priorities

    Get PDF
    Environmental and occupational risk factors contribute to nearly 40% of the national burden of disease in India, with air pollution in the indoor and outdoor environment ranking amongst leading risk factors. It is now recognized that the health burden from air pollution exposures that primarily occur in the rural indoors, from pollutants released during the incomplete combustion of solid fuels in households, may rival or even exceed the burden attributable to urban outdoor exposures. Few environmental epidemiological efforts have been devoted to this setting, however. We provide an overview of important available information on exposures and health effects related to household solid fuel use in India, with a view to inform health research priorities for household air pollution and facilitate being able to address air pollution within an integrated rural–urban framework in the future

    Characteristics of control group participants who increased their physical activity in a cluster-randomized lifestyle intervention trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meaningful improvement in physical activity among control group participants in lifestyle intervention trials is not an uncommon finding, and may be partly explained by participant characteristics. This study investigated which baseline demographic, health and behavioural characteristics were predictive of successful improvement in physical activity in usual care group participants recruited into a telephone-delivered physical activity and diet intervention trial, and descriptively compared these characteristics with those that were predictive of improvement among intervention group participants.</p> <p>Methods</p> <p>Data come from the Logan Healthy Living Program, a primary care-based, cluster-randomized controlled trial of a physical activity and diet intervention. Multivariable logistic regression models examined variables predictive of an improvement of at least 60 minutes per week of moderate-to-vigorous intensity physical activity among usual care (n = 166) and intervention group (n = 175) participants.</p> <p>Results</p> <p>Baseline variables predictive of a meaningful change in physical activity were different for the usual care and intervention groups. Being retired and completing secondary school (but no further education) were predictive of physical activity improvement for usual care group participants, whereas only baseline level of physical activity was predictive of improvement for intervention group participants. Higher body mass index and being unmarried may also be predictors of physical activity improvement for usual care participants.</p> <p>Conclusion</p> <p>This is the first study to examine differences in predictors of physical activity improvement between intervention group and control group participants enrolled in a physical activity intervention trial. While further empirical research is necessary to confirm findings, results suggest that participants with certain socio-demographic characteristics may respond favourably to minimal intensity interventions akin to the treatment delivered to participants in a usual care group. In future physical activity intervention trials, it may be possible to screen participants for baseline characteristics in order to target minimal-intensity interventions to those most likely to benefit. (Australian Clinical Trials Registry, <url>http://www.anzctr.org.au/default.aspx</url>, ACTRN012607000195459)</p

    The Nigerian national blindness and visual impairment survey: Rationale, objectives and detailed methodology.

    Get PDF
    BACKGROUND: Despite having the largest population in Africa, Nigeria has no accurate population based data to plan and evaluate eye care services. A national survey was undertaken to estimate the prevalence and determine the major causes of blindness and low vision. This paper presents the detailed methodology used during the survey. METHODS: A nationally representative sample of persons aged 40 years and above was selected. Children aged 10-15 years and individuals aged <10 or 16-39 years with visual impairment were also included if they lived in households with an eligible adult. All participants had their height, weight, and blood pressure measured followed by assessment of presenting visual acuity, refractokeratomery, A-scan ultrasonography, visual fields and best corrected visual acuity. Anterior and posterior segments of each eye were examined with a torch and direct ophthalmoscope. Participants with visual acuity of < = 6/12 in one or both eyes underwent detailed examination including applanation tonometry, dilated slit lamp biomicroscopy, lens grading and fundus photography. All those who had undergone cataract surgery were refracted and best corrected vision recorded. Causes of visual impairment by eye and for the individual were determined using a clinical algorithm recommended by the World Health Organization. In addition, 1 in 7 adults also underwent a complete work up as described for those with vision < = 6/12 for constructing a normative data base for Nigerians. DISCUSSION: The field work for the study was completed in 30 months over the period 2005-2007 and covered 305 clusters across the entire country. Concurrently persons 40+ years were examined to form a normative data base. Analysis of the data is currently underway. CONCLUSION: The methodology used was robust and adequate to provide estimates on the prevalence and causes of blindness in Nigeria. The survey would also provide information on barriers to accessing services, quality of life of visually impaired individuals and also provide normative data for Nigerian eyes

    Energy, Forest, and Indoor Air Pollution Models for Sagarmatha National Park and Buffer Zone, Nepal Implementation of a Participatory Modeling Framework

    No full text
    This paper presents the results of management-oriented research on energy, forest, and human health issues in a remote mountain area, the Sagarmatha National Park and Buffer Zone (SNPBZ), Nepal. The research was based on a broader, integrated participatory framework ultimately intended for use in adaptive management. The present study focused on the application of a participatory modeling framework to address problems related to energy demand and consumption, forest condition, and indoor air pollution, which were defined by the stakeholders as important issues to be addressed. The models were developed using a generalizing design that allows for user-friendly adaptation to other contexts (free download at http://hkkhpartnership.org). Moreover, we simulated management scenarios in collaboration with all modeling actors with the aim of building consensus on the understanding of the system as well as supporting decision-makers' capacity not only to respond to changes, but also to anticipate them. Importantly, the system dynamics assessment found that the SNPBZ forests are affected by an increasing demand for fuelwood (occurring due to tourism growth), as one of the main sources of energy. Selected forests show an average reduction of 38% in forest biomass from 1992 to 2008. This shows that the business-as-usual scenario is unlikely to result in the preservation of the current forest status; in fact, such preservation would require 75% of fuelwood to be replaced with alternative energy sources. At the same time, a 75% reduction of fuelwood use (and an 80% reduction of dung use) would reduce indoor carbon monoxide (CO) concentrations to the standard limits for CO exposure set by the World Health Organization
    corecore