58 research outputs found

    Angiotensin-converting enzyme gene insertion/deletion polymorphism is associated with risk of oral precancerous lesion in betel quid chewers

    Get PDF
    To investigate whether angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism is related to the risk of oral precancerous lesions (OPL) in Taiwanese subjects who chew betel quid, a total of 61 betel quid chewers having OPL were compared with 61 asymptomatic betel quid chewers matched for betel quid chewing duration and dosage. The frequency of homozygote for ACE D variant is significantly higher in the case subjects than that of the controls (44.3 vs 24.6%; P=0.0108). The adjusted odds ratio of the D homozygous for the risk of OPL is 8.10 (95% confidence interval (CI)=2.04–32.19, P=0.003). In the allelic base analysis, the D allele is also significantly associated with higher risk of OPL. When grouping the study subjects by smoking status, the association between ACE I/D polymorphism and risk of OPL was only observed in nonsmokers. Our results support the theory that genetic factors may contribute to the susceptibility of OPL and suggest that smoking and genetic factors may be differently involved in the development of OPL

    Glutathione S-transferase genotypes modify lung function decline in the general population: SAPALDIA cohort study

    Get PDF
    BACKGROUND: Understanding the environmental and genetic risk factors of accelerated lung function decline in the general population is a first step in a prevention strategy against the worldwide increasing respiratory pathology of chronic obstructive pulmonary disease (COPD). Deficiency in antioxidative and detoxifying Glutathione S-transferase (GST) gene has been associated with poorer lung function in children, smokers and patients with respiratory diseases. In the present study, we assessed whether low activity variants in GST genes are also associated with accelerated lung function decline in the general adult population. METHODS: We examined with multiple regression analysis the association of polymorphisms in GSTM1, GSTT1 and GSTP1 genes with annual decline in FEV1, FVC, and FEF(25–75 )during 11 years of follow-up in 4686 subjects of the prospective SAPALDIA cohort representative of the Swiss general population. Effect modification by smoking, gender, bronchial hyperresponisveness and age was studied. RESULTS: The associations of GST genotypes with FEV1, FVC, and FEF(25–75 )were comparable in direction, but most consistent for FEV1. GSTT1 homozygous gene deletion alone or in combination with GSTM1 homozygous gene deletion was associated with excess decline in FEV1 in men, but not women, irrespective of smoking status. The additional mean annual decline in FEV1 in men with GSTT1 and concurrent GSTM1 gene deletion was -8.3 ml/yr (95% confidence interval: -12.6 to -3.9) relative to men without these gene deletions. The GSTT1 effect on the FEV1 decline comparable to the observed difference in FEV1 decline between never and persistent smoking men. Effect modification by gender was statistically significant. CONCLUSION: Our results suggest that genetic GSTT1 deficiency is a prevalent and strong determinant of accelerated lung function decline in the male general population

    Chronic Allergic Inflammation Causes Vascular Remodeling and Pulmonary Hypertension in Bmpr2 Hypomorph and Wild-Type Mice

    Get PDF
    Loss-of-function mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene have been identified in patients with heritable pulmonary arterial hypertension (PAH); however, disease penetrance is low, suggesting additional factors play a role. Inflammation is associated with PAH and vascular remodeling, but whether allergic inflammation triggers vascular remodeling in individuals with BMPR2 mutations is unknown. Our goal was to determine if chronic allergic inflammation would induce more severe vascular remodeling and PAH in mice with reduced BMPR-II signaling. Groups of Bmpr2 hypomorph and wild-type (WT) Balb/c/Byj mice were exposed to house dust mite (HDM) allergen, intranasally for 7 or 20 weeks to generate a model of chronic inflammation. HDM exposure induced similar inflammatory cell counts in all groups compared to controls. Muscularization of pulmonary arterioles and arterial wall thickness were increased after 7 weeks HDM, more severe at 20 weeks, but similar in both groups. Right ventricular systolic pressure (RVSP) was measured by direct cardiac catheterization to assess PAH. RVSP was similarly increased in both HDM exposed groups after 20 weeks compared to controls, but not after 7 weeks. Airway hyperreactivity (AHR) to methacholine was also assessed and interestingly, at 20 weeks, was more severe in HDM exposed Bmpr2 hypomorph mice versus WT. We conclude that chronic allergic inflammation caused PAH and while the severity was mild and similar between WT and Bmpr2 hypomorph mice, AHR was enhanced with reduced BMPR-II signaling. These data suggest that vascular remodeling and PAH resulting from chronic allergic inflammation occurs independently of BMPR-II pathway alterations

    Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphisms in <it>glutathione S-transferase </it>(GST) genes may influence response to oxidative stress and modify prostate cancer (PCA) susceptibility. These enzymes generally detoxify endogenous and exogenous agents, but also participate in the activation and inactivation of oxidative metabolites that may contribute to PCA development. Genetic variations within selected <it>GST </it>genes may influence PCA risk following exposure to carcinogen compounds found in cigarette smoke and decreased the ability to detoxify them. Thus, we evaluated the effects of polymorphic <it>GSTs </it>(<it>M1</it>, <it>T1</it>, and <it>P1</it>) alone and combined with cigarette smoking on PCA susceptibility.</p> <p>Methods</p> <p>In order to evaluate the effects of <it>GST </it>polymorphisms in relation to PCA risk, we used TaqMan allelic discrimination assays along with a multi-faceted statistical strategy involving conventional and advanced statistical methodologies (e.g., Multifactor Dimensionality Reduction and Interaction Graphs). Genetic profiles collected from 873 men of African-descent (208 cases and 665 controls) were utilized to systematically evaluate the single and joint modifying effects of <it>GSTM1 </it>and <it>GSTT1 </it>gene deletions, <it>GSTP1 </it>105 Val and cigarette smoking on PCA risk.</p> <p>Results</p> <p>We observed a moderately significant association between risk among men possessing at least one variant <it>GSTP1 </it>105 Val allele (OR = 1.56; 95%CI = 0.95-2.58; p = 0.049), which was confirmed by MDR permutation testing (p = 0.001). We did not observe any significant single gene effects among <it>GSTM1 </it>(OR = 1.08; 95%CI = 0.65-1.82; p = 0.718) and <it>GSTT1 </it>(OR = 1.15; 95%CI = 0.66-2.02; p = 0.622) on PCA risk among all subjects. Although the <it>GSTM1</it>-<it>GSTP1 </it>pairwise combination was selected as the best two factor LR and MDR models (p = 0.01), assessment of the hierarchical entropy graph suggested that the observed synergistic effect was primarily driven by the <it>GSTP1 </it>Val marker. Notably, the <it>GSTM1</it>-<it>GSTP1 </it>axis did not provide additional information gain when compared to either loci alone based on a hierarchical entropy algorithm and graph. Smoking status did not significantly modify the relationship between the <it>GST </it>SNPs and PCA.</p> <p>Conclusion</p> <p>A moderately significant association was observed between PCA risk and men possessing at least one variant <it>GSTP1 </it>105 Val allele (p = 0.049) among men of African descent. We also observed a 2.1-fold increase in PCA risk associated with men possessing the <it>GSTP1 </it>(Val/Val) and <it>GSTM1 </it>(*1/*1 + *1/*0) alleles. MDR analysis validated these findings; detecting <it>GSTP1 </it>105 Val (p = 0.001) as the best single factor for predicting PCA risk. Our findings emphasize the importance of utilizing a combination of traditional and advanced statistical tools to identify and validate single gene and multi-locus interactions in relation to cancer susceptibility.</p

    Associations of iron metabolism genes with blood manganese levels: a population-based study with validation data from animal models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given mounting evidence for adverse effects from excess manganese exposure, it is critical to understand host factors, such as genetics, that affect manganese metabolism.</p> <p>Methods</p> <p>Archived blood samples, collected from 332 Mexican women at delivery, were analyzed for manganese. We evaluated associations of manganese with functional variants in three candidate iron metabolism genes: <it>HFE </it>[hemochromatosis], <it>TF </it>[transferrin], and <it>ALAD </it>[δ-aminolevulinic acid dehydratase]. We used a knockout mouse model to parallel our significant results as a novel method of validating the observed associations between genotype and blood manganese in our epidemiologic data.</p> <p>Results</p> <p>Percentage of participants carrying at least one copy of <it>HFE C282Y</it>, <it>HFE H63D</it>, <it>TF P570S</it>, and <it>ALAD K59N </it>variant alleles was 2.4%, 17.7%, 20.1%, and 6.4%, respectively. Percentage carrying at least one copy of either <it>C282Y </it>or <it>H63D </it>allele in <it>HFE </it>gene was 19.6%. Geometric mean (geometric standard deviation) manganese concentrations were 17.0 (1.5) μg/l. Women with any <it>HFE </it>variant allele had 12% lower blood manganese concentrations than women with no variant alleles (β = -0.12 [95% CI = -0.23 to -0.01]). <it>TF </it>and <it>ALAD </it>variants were not significant predictors of blood manganese. In animal models, <it>Hfe</it><sup>-/- </sup>mice displayed a significant reduction in blood manganese compared with <it>Hfe</it><sup>+/+ </sup>mice, replicating the altered manganese metabolism found in our human research.</p> <p>Conclusions</p> <p>Our study suggests that genetic variants in iron metabolism genes may contribute to variability in manganese exposure by affecting manganese absorption, distribution, or excretion. Genetic background may be critical to consider in studies that rely on environmental manganese measurements.</p
    corecore