12 research outputs found

    The topology, structure and PE interaction of LITAF underpin a Charcot-Marie-Tooth disease type 1C

    Get PDF
    BACKGROUND: Mutations in Lipopolysaccharide-induced tumour necrosis factor-α factor (LITAF) cause the autosomal dominant inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). LITAF encodes a 17 kDa protein containing an N-terminal proline-rich region followed by an evolutionarily-conserved C-terminal 'LITAF domain', which contains all reported CMT1C-associated pathogenic mutations. RESULTS: Here, we report the first structural characterisation of LITAF using biochemical, cell biological, biophysical and NMR spectroscopic approaches. Our structural model demonstrates that LITAF is a monotopic zinc-binding membrane protein that embeds into intracellular membranes via a predicted hydrophobic, in-plane, helical anchor located within the LITAF domain. We show that specific residues within the LITAF domain interact with phosphoethanolamine (PE) head groups, and that the introduction of the V144M CMT1C-associated pathogenic mutation leads to protein aggregation in the presence of PE. CONCLUSIONS: In addition to the structural characterisation of LITAF, these data lead us to propose that an aberrant LITAF-PE interaction on the surface of intracellular membranes contributes to the molecular pathogenesis that underlies this currently incurable disease.Wellcome-Beit Prize; Intermediate Clinical Fellowship (093809/Z/10/Z); Wellcome Trust Strategic Award 100140; Wellcome Trust grant 09302

    Self-assembly of Microcapsules via Colloidal Bond Hybridization and Anisotropy

    Full text link
    Particles with directional interactions are promising building blocks for new functional materials and may serve as models for biological structures. Mutually attractive nanoparticles that are deformable due to flexible surface groups, for example, may spontaneously order themselves into strings, sheets and large vesicles. Furthermore, anisotropic colloids with attractive patches can self-assemble into open lattices and colloidal equivalents of molecules and micelles. However, model systems that combine mutual attraction, anisotropy, and deformability have---to the best of our knowledge---not been realized. Here, we synthesize colloidal particles that combine these three characteristics and obtain self-assembled microcapsules. We propose that mutual attraction and deformability induce directional interactions via colloidal bond hybridization. Our particles contain both mutually attractive and repulsive surface groups that are flexible. Analogous to the simplest chemical bond, where two isotropic orbitals hybridize into the molecular orbital of H2, these flexible groups redistribute upon binding. Via colloidal bond hybridization, isotropic spheres self-assemble into planar monolayers, while anisotropic snowman-like particles self-assemble into hollow monolayer microcapsules. A modest change of the building blocks thus results in a significant leap in the complexity of the self-assembled structures. In other words, these relatively simple building blocks self-assemble into dramatically more complex structures than similar particles that are isotropic or non-deformable

    Molecular basis and regulation of OTULIN-LUBAC interaction

    Get PDF
    The linear ubiquitin (Ub) chain assembly complex (LUBAC) generates Met1-linked "linear" Ub chains that regulate the activation of the nuclear factor κB (NFκB) transcription factor and other processes. We recently discovered OTULIN as a deubiquitinase that specifically cleaves Met1-linked polyUb. Now, we show that OTULIN binds via a conserved PUB-interacting motif (PIM) to the PUB domain of the LUBAC component HOIP. Crystal structures and nuclear magnetic resonance experiments reveal the molecular basis for the high-affinity interaction and explain why OTULIN binds the HOIP PUB domain specifically. Analysis of LUBAC-induced NFκB signaling suggests that OTULIN needs to be present on LUBAC in order to restrict Met1-polyUb signaling. Moreover, LUBAC-OTULIN complex formation is regulated by OTULIN phosphorylation in the PIM. Phosphorylation of OTULIN prevents HOIP binding, whereas unphosphorylated OTULIN is part of the endogenous LUBAC complex. Our work exemplifies how coordination of ubiquitin assembly and disassembly activities in protein complexes regulates individual Ub linkage types. © 2014 The Authors

    Molecular basis and regulation of OTULIN-LUBAC interaction

    No full text
    The linear ubiquitin (Ub) chain assembly complex (LUBAC) generates Met1-linked “linear” Ub chains that regulate the activation of the nuclear factor κB (NFκB) transcription factor and other processes. We recently discovered OTULIN as a deubiquitinase that specifically cleaves Met1-linked polyUb. Now, we show that OTULIN binds via a conserved PUB-interacting motif (PIM) to the PUB domain of the LUBAC component HOIP. Crystal structures and nuclear magnetic resonance experiments reveal the molecular basis for the high-affinity interaction and explain why OTULIN binds the HOIP PUB domain specifically. Analysis of LUBAC-induced NFκB signaling suggests that OTULIN needs to be present on LUBAC in order to restrict Met1-polyUb signaling. Moreover, LUBAC-OTULIN complex formation is regulated by OTULIN phosphorylation in the PIM. Phosphorylation of OTULIN prevents HOIP binding, whereas unphosphorylated OTULIN is part of the endogenous LUBAC complex. Our work exemplifies how coordination of ubiquitin assembly and disassembly activities in protein complexes regulates individual Ub linkage types. </p

    Regulation of CYLD activity and specificity by phosphorylation and ubiquitin-binding CAP-Gly domains

    No full text
    Non-degradative ubiquitin chains and phosphorylation events govern signaling responses by innate immune receptors. The deubiquitinase CYLD in complex with SPATA2 is recruited to receptor signaling complexes by the ubiquitin ligase LUBAC and regulates Met1- and Lys63-linked polyubiquitin and receptor signaling outcomes. Here, we investigate the molecular determinants of CYLD activity. We reveal that two CAP-Gly domains in CYLD are ubiquitin-binding domains and demonstrate a requirement of CAP-Gly3 for CYLD activity and regulation of immune receptor signaling. Moreover, we identify a phosphorylation switch outside of the catalytic USP domain, which activates CYLD toward Lys63-linked polyubiquitin. The phosphorylated residue Ser568 is a novel tumor necrosis factor (TNF)-regulated phosphorylation site in CYLD and works in concert with Ser418 to enable CYLD-mediated deubiquitination and immune receptor signaling. We propose that phosphorylated CYLD, together with SPATA2 and LUBAC, functions as a ubiquitin-editing complex that balances Lys63- and Met1-linked polyubiquitin at receptor signaling complexes to promote LUBAC signaling

    SPATA2 links CYLD to LUBAC, activates CYLD and controls LUBAC signaling

    No full text
    The Linear UBiquitin chain Assembly Complex (LUBAC) regulates immune signaling and its function is regulated by the deubiquitinases OTULIN and CYLD that associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain that binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF Receptor 1 signaling complex, and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and regulatory component of LUBAC-mediated NF-NB signaling

    SPATA2 links CYLD to LUBAC, activates CYLD and controls LUBAC signaling

    No full text
    The Linear UBiquitin chain Assembly Complex (LUBAC) regulates immune signaling and its function is regulated by the deubiquitinases OTULIN and CYLD that associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain that binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF Receptor 1 signaling complex, and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and regulatory component of LUBAC-mediated NF-NB signaling
    corecore