64 research outputs found
Preharvest Chitosan and Postharvest UV Irradiation Treatments Suppress Gray Mold of Table Grapes
The effectiveness of chitosan treatment of table grapes, alone or in combination with ultraviolet-C (UV-C) radiation, to control postharvest gray mold caused by Botrytis cinerea, was determined in California, United States. The influence of these treatments on catechin and resveratrol contents and chitinase activity in grape berry skins also was assessed. Clusters of cvs. Thompson Seedless, Autumn Black, and Emperor were sprayed in the vineyard with 1% chitosan, then harvested daily for 5 days. Promptly after harvest, they were inoculated with B. cinerea. Decay incidence and disease severity were significantly reduced by chitosan, which was most effective on berries harvested 1 or 2 days after treatment. In another experiment, grape berries were sprayed in the vineyard with chitosan, harvested 2 days later, irradiated for 5 min with UV-C (0.36 J/cm2), and inoculated with B. cinerea 2 days later. Combined chitosan and UV-C treatments applied to cv. Autumn Black or selection B36-55 were synergistic in reducing gray mold incidence and severity compared with either treatment alone. Preharvest chitosan treatment increased neither concentration of catechin or resveratrol nor activity of chitinase in berry skin. Conversely, UV-C irradiation, alone or combined with chitosan treatment, induced catechin in cv. Autumn Black berries and trans-resveratrol in both cv. Autumn Black and selection B36-55
Use of phosphite salts in laboratory and semicommercial tests to control citrus postharvest decay
Potassium phosphite (KP) concentrations that inhibited the germination of 50% of Penicillium digitatum conidia were 229, 334, 360, 469, 498, or 580 mg/liter at pH 3, 4, 5, 6, 7, or 8, respectively. Increasing phosphate content in media reduced phosphite toxicity. To control green or blue mold, fruit were inoculated with P. digitatum or P. italicum, then immersed 24 h later in KP, calcium phosphite (CaP), sodium carbonate, sodium bicarbonate, or potassium sorbate for 1 min at 20 g/liter for each at 25 or 50°C. Mold incidence was lowest after potassium sorbate, CaP, or KP treatments at 50°C. CaP was often more effective than KP but left a white residue on fruit. KP was significantly more effective when fruit were stored at 10 or 15°C after treatment compared with 20°C. Acceptable levels of control were achieved only when KP was used in heated solutions or with fungicides. KP was compatible with imazalil (IMZ) and other fungicides and improved their effectiveness. KP increased thiabendazole or IMZ residues slightly. Phosphite residues did not change during storage for 3 weeks, except they declined when KP was applied with IMZ. KP caused no visible injuries or alteration in the rate of color change of citrus fruit in air or ethylene at 5 µl/liter.Fil: Cerioni, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Rapisarda, Viviana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Doctor, J.. Fruit Growers Supply Packing Services; Estados UnidosFil: Fikkert, S.. Plant Protectants; Estados UnidosFil: Ruiz, T.. Pace International; Estados UnidosFil: Fassel, R.. Pace International; Estados UnidosFil: Smilanick, J. L.. United States Department of Agriculture; Estados Unido
- …