24 research outputs found

    Efficient representation of uncertainty in multiple sequence alignments using directed acyclic graphs

    Get PDF
    Background A standard procedure in many areas of bioinformatics is to use a single multiple sequence alignment (MSA) as the basis for various types of analysis. However, downstream results may be highly sensitive to the alignment used, and neglecting the uncertainty in the alignment can lead to significant bias in the resulting inference. In recent years, a number of approaches have been developed for probabilistic sampling of alignments, rather than simply generating a single optimum. However, this type of probabilistic information is currently not widely used in the context of downstream inference, since most existing algorithms are set up to make use of a single alignment. Results In this work we present a framework for representing a set of sampled alignments as a directed acyclic graph (DAG) whose nodes are alignment columns; each path through this DAG then represents a valid alignment. Since the probabilities of individual columns can be estimated from empirical frequencies, this approach enables sample-based estimation of posterior alignment probabilities. Moreover, due to conditional independencies between columns, the graph structure encodes a much larger set of alignments than the original set of sampled MSAs, such that the effective sample size is greatly increased. Conclusions The alignment DAG provides a natural way to represent a distribution in the space of MSAs, and allows for existing algorithms to be efficiently scaled up to operate on large sets of alignments. As an example, we show how this can be used to compute marginal probabilities for tree topologies, averaging over a very large number of MSAs. This framework can also be used to generate a statistically meaningful summary alignment; example applications show that this summary alignment is consistently more accurate than the majority of the alignment samples, leading to improvements in downstream tree inference. Implementations of the methods described in this article are available at http://statalign.github.io/WeaveAlign webcite

    PROPER: global protein interaction network alignment through percolation matching

    Get PDF
    Background The alignment of protein-protein interaction (PPI) networks enables us to uncover the relationships between different species, which leads to a deeper understanding of biological systems. Network alignment can be used to transfer biological knowledge between species. Although different PI-network alignment algorithms were introduced during the last decade, developing an accurate and scalable algorithm that can find alignments with high biological and structural similarities among PPI networks is still challenging. Results In this paper, we introduce a new global network alignment algorithm for PPI networks called PROPER. Compared to other global network alignment methods, our algorithm shows higher accuracy and speed over real PPI datasets and synthetic networks. We show that the PROPER algorithm can detect large portions of conserved biological pathways between species. Also, using a simple parsimonious evolutionary model, we explain why PROPER performs well based on several different comparison criteria. Conclusions We highlight that PROPER has high potential in further applications such as detecting biological pathways, finding protein complexes and PPI prediction. The PROPER algorithm is available at http://proper.epfl.ch
    corecore