42 research outputs found

    Proton Magnetic Resonance Spectroscopy in 22q11 Deletion Syndrome

    Get PDF
    OBJECTIVE: People with velo-cardio-facial syndrome or 22q11 deletion syndrome (22q11DS) have behavioral, cognitive and psychiatric problems. Approximately 30% of affected individuals develop schizophrenia-like psychosis. Glutamate dysfunction is thought to play a crucial role in schizophrenia. However, it is unknown if and how the glutamate system is altered in 22q11DS. People with 22q11DS are vulnerable for haploinsufficiency of PRODH, a gene that codes for an enzyme converting proline into glutamate. Therefore, it can be hypothesized that glutamatergic abnormalities may be present in 22q11DS. METHOD: We employed proton magnetic resonance spectroscopy ((1)H-MRS) to quantify glutamate and other neurometabolites in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of 22 adults with 22q11DS (22q11DS SCZ+) and without (22q11DS SCZ-) schizophrenia and 23 age-matched healthy controls. Also, plasma proline levels were determined in the 22q11DS group. RESULTS: We found significantly increased concentrations of glutamate and myo-inositol in the hippocampal region of 22q11DS SCZ+ compared to 22q11DS SCZ-. There were no significant differences in levels of plasma proline between 22q11DS SCZ+ and 22q11DS SCZ-. There was no relationship between plasma proline and cerebral glutamate in 22q11DS. CONCLUSION: This is the first in vivo(1)H-MRS study in 22q11DS. Our results suggest vulnerability of the hippocampus in the psychopathology of 22q11DS SCZ+. Altered hippocampal glutamate and myo-inositol metabolism may partially explain the psychotic symptoms and cognitive impairments seen in this group of patients

    The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early diagenetic processes involved in natural organic matter (NOM) oxidation in marine sediments have been for the most part characterized after collecting sediment cores and extracting porewaters. These techniques have proven useful for deep-sea sediments where biogeochemical processes are limited to aerobic respiration, denitrification, and manganese reduction and span over several centimeters. In coastal marine sediments, however, the concentration of NOM is so high that the spatial resolution needed to characterize these processes cannot be achieved with conventional sampling techniques. In addition, coastal sediments are influenced by tidal forcing that likely affects the processes involved in carbon oxidation.</p> <p>Results</p> <p>In this study, we used in situ voltammetry to determine the role of tidal forcing on early diagenetic processes in intertidal salt marsh sediments. We compare ex situ measurements collected seasonally, in situ profiling measurements, and in situ time series collected at several depths in the sediment during tidal cycles at two distinct stations, a small perennial creek and a mud flat. Our results indicate that the tides coupled to the salt marsh topography drastically influence the distribution of redox geochemical species and may be responsible for local differences noted year-round in the same sediments. Monitoring wells deployed to observe the effects of the tides on the vertical component of porewater transport reveal that creek sediments, because of their confinements, are exposed to much higher hydrostatic pressure gradients than mud flats.</p> <p>Conclusion</p> <p>Our study indicates that iron reduction can be sustained in intertidal creek sediments by a combination of physical forcing and chemical oxidation, while intertidal mud flat sediments are mainly subject to sulfate reduction. These processes likely allow microbial iron reduction to be an important terminal electron accepting process in intertidal coastal sediments.</p

    Large-Scale Absence of Sharks on Reefs in the Greater-Caribbean: A Footprint of Human Pressures

    Get PDF
    BACKGROUND: In recent decades, large pelagic and coastal shark populations have declined dramatically with increased fishing; however, the status of sharks in other systems such as coral reefs remains largely unassessed despite a long history of exploitation. Here we explore the contemporary distribution and sighting frequency of sharks on reefs in the greater-Caribbean and assess the possible role of human pressures on observed patterns. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed 76,340 underwater surveys carried out by trained volunteer divers between 1993 and 2008. Surveys were grouped within one km2 cells, which allowed us to determine the contemporary geographical distribution and sighting frequency of sharks. Sighting frequency was calculated as the ratio of surveys with sharks to the total number of surveys in each cell. We compared sighting frequency to the number of people in the cell vicinity and used population viability analyses to assess the effects of exploitation on population trends. Sharks, with the exception of nurse sharks occurred mainly in areas with very low human population or strong fishing regulations and marine conservation. Population viability analysis suggests that exploitation alone could explain the large-scale absence; however, this pattern is likely to be exacerbated by additional anthropogenic stressors, such as pollution and habitat degradation, that also correlate with human population. CONCLUSIONS/SIGNIFICANCE: Human pressures in coastal zones have lead to the broad-scale absence of sharks on reefs in the greater-Caribbean. Preventing further loss of sharks requires urgent management measures to curb fishing mortality and to mitigate other anthropogenic stressors to protect sites where sharks still exist. The fact that sharks still occur in some densely populated areas where strong fishing regulations are in place indicates the possibility of success and encourages the implementation of conservation measures

    Toll-like receptor signaling and stages of addiction

    Get PDF
    Athina Markou and her colleagues discovered persistent changes in adult behavior following adolescent exposure to ethanol or nicotine consistent with increased risk for developing addiction. Building on Dr. Markou's important work and that of others in the field, researchers at the Bowles Center for Alcohol Studies have found that persistent changes in behavior following adolescent stress or alcohol exposure may be linked to induction of immune signaling in brain. This study aims to illuminate the critical interrelationship of the innate immune system (e.g., toll-like receptors [TLRs], high-mobility group box 1 [HMGB1]) in the neurobiology of addiction. This study reviews the relevant research regarding the relationship between the innate immune system and addiction. Emerging evidence indicates that TLRs in brain, particularly those on microglia, respond to endogenous innate immune agonists such as HMGB1 and microRNAs (miRNAs). Multiple TLRs, HMGB1, and miRNAs are induced in the brain by stress, alcohol, and other drugs of abuse and are increased in the postmortem human alcoholic brain. Enhanced TLR-innate immune signaling in brain leads to epigenetic modifications, alterations in synaptic plasticity, and loss of neuronal cell populations, which contribute to cognitive and emotive dysfunctions. Addiction involves progressive stages of drug binges and intoxication, withdrawal-negative affect, and ultimately compulsive drug use and abuse. Toll-like receptor signaling within cortical-limbic circuits is modified by alcohol and stress in a manner consistent with promoting progression through the stages of addiction
    corecore