14 research outputs found

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Characterization of intrinsic hole transport in single-crystal spiro-OMeTAD

    No full text
    Solar Cells: Intermolecular packing and molecular structure determine hole transport How the molecular packing ordering impact the hole-transport mechanism of an important hole-transport material in solid-state-dye-sensitized solar cells and perovskite solar cells is deciphered. A team led by Jean-Luc Brédas at King Abdullah University of Science and Technology performed a theoretical characterization of the hole-transport mechanism in 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene (spiro-OMeTAD), which has been recently reported to exhibit three-order-magnitude enhanced hole mobility in its single crystal phase compared to spin-coated thin films. The results show that hole transport strongly prefers only one crystal axis, along which the characteristics of intermolecular packing and molecular structure determine the pathway of holes through the functional layer. The finding underlines the strong correlation between molecular and crystal structures and intrinsic electronic properties of molecular conductors, and might help guide better design of hole-transport materials for hybrid solar cell devices
    corecore