25 research outputs found

    Factors underlying the perturbation resistance of the trunk in the first part of a lifting movement

    Get PDF
    In the first part of lifting movements, the trunk movement is surprisingly resistant to perturbations. This study examined which factors contribute to this perturbation resistance of the trunk during lifting. Three possible mechanisms were studied: force-length-velocity characteristics of muscles, the momentum of the trunk as well as the effect of passive extending of the elbows. A forward dynamics modelling and simulation approach was adopted with two different input signals: (1) stimulation of Hill-type muscles versus (2) net joint moments. Experimental data collected during an unperturbed lifting movement were used as a reference, which a simulated lifting movement had to resemble. Subsequently, the simulated lifting movement was perturbed by applying 10 kg extra mass at the wrist (both before and after lift-off and with/without a fixed elbow), without modifying the input signals. The momentum of the trunk appeared to be insufficient to explain the perturbation resistance of trunk movements as found experimentally. In addition to the momentum of the trunk, the force-length-velocity characteristics of the muscles are necessary to account for the observed perturbation resistance. Initial extension of the elbow due to the mass perturbation delayed the propagation of the load to the shoulder. However, this delay is reduced due to the impedance at the elbow provided by the characteristics of muscles spanning the elbow. So, the force-length-velocity characteristics of the muscles spanning the elbow joint increase the perturbation at the trunk. © Springer-Verlag 2005

    Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads

    No full text
    Despite the well-recognized role of lifting in back injuries, the relative biomechanical merits of squat versus stoop lifting remain controversial. In vivo kinematics measurements and model studies are combined to estimate trunk muscle forces and internal spinal loads under dynamic squat and stoop lifts with and without load in hands. Measurements were performed on healthy subjects to collect segmental rotations during lifts needed as input data in subsequent model studies. The model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles to take curved paths in flexion and trunk dynamic characteristics (inertia and damping) while subject to measured kinematics and gravity/external loads. A dynamic kinematics-driven approach was employed accounting for the spinal synergy by simultaneous consideration of passive structures and muscle forces under given posture and loads. Results satisfied kinematics and dynamic equilibrium conditions at all levels and directions. Net moments, muscle forces at different levels, passive (muscle or ligamentous) forces and internal compression/shear forces were larger in stoop lifts than in squat ones. These were due to significantly larger thorax, lumbar and pelvis rotations in stoop lifts. For the relatively slow lifting tasks performed in this study with the lowering and lifting phases each lasting ∼2 s, the effect of inertia and damping was not, in general, important. Moreover, posterior shift in the position of the external load in stoop lift reaching the same lever arm with respect to the S1 as that in squat lift did not influence the conclusion of this study on the merits of squat lifts over stoop ones. Results, for the tasks considered, advocate squat lifting over stoop lifting as the technique of choice in reducing net moments, muscle forces and internal spinal loads (i.e., moment, compression and shear force)
    corecore