92 research outputs found

    Roadmap on multiscale materials modeling

    Get PDF
    Modeling and simulation is transforming modern materials science, becoming an important tool for the discovery of new materials and material phenomena, for gaining insight into the processes that govern materials behavior, and, increasingly, for quantitative predictions that can be used as part of a design tool in full partnership with experimental synthesis and characterization. Modeling and simulation is the essential bridge from good science to good engineering, spanning from fundamental understanding of materials behavior to deliberate design of new materials technologies leveraging new properties and processes. This Roadmap presents a broad overview of the extensive impact computational modeling has had in materials science in the past few decades, and offers focused perspectives on where the path forward lies as this rapidly expanding field evolves to meet the challenges of the next few decades. The Roadmap offers perspectives on advances within disciplines as diverse as phase field methods to model mesoscale behavior and molecular dynamics methods to deduce the fundamental atomic-scale dynamical processes governing materials response, to the challenges involved in the interdisciplinary research that tackles complex materials problems where the governing phenomena span different scales of materials behavior requiring multiscale approaches. The shift from understanding fundamental materials behavior to development of quantitative approaches to explain and predict experimental observations requires advances in the methods and practice in simulations for reproducibility and reliability, and interacting with a computational ecosystem that integrates new theory development, innovative applications, and an increasingly integrated software and computational infrastructure that takes advantage of the increasingly powerful computational methods and computing hardware

    Metal [100] Nanowires with Negative Poisson???s Ratio

    Get PDF
    When materials are under stretching, occurrence of lateral contraction of materials is commonly observed. This is because Poisson???s ratio, the quantity describes the relationship between a lateral strain and applied strain, is positive for nearly all materials. There are some reported structures and materials having negative Poisson???s ratio. However, most of them are at macroscale, and reentrant structures and rigid rotating units are the main mechanisms for their negative Poisson???s ratio behavior. Here, with numerical and theoretical evidence, we show that metal [100] nanowires with asymmetric cross-sections such as rectangle or ellipse can exhibit negative Poisson???s ratio behavior. Furthermore, the negative Poisson???s ratio behavior can be further improved by introducing a hole inside the asymmetric nanowires. We show that the surface effect inducing the asymmetric stresses inside the nanowires is a main origin of the superior property.ope

    Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation

    Get PDF
    It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires.close10

    Recent developments in IMD: Interactions for covalent and metallic systems

    No full text
    We describe the recent developments of IMD (ITAP Molecular Dyna- mics), a general purpose program for classical molecular dynamics simulations on workstations and massively parallel supercomputers. As pair potentials are not entirely suitable for many classes of materials, several further types of interactions with many body forces have been implemented, thereby extending the range of applicability of IMD. IMD now supports, in particular, also EAM (Embedded Atom Method) potentials for the simulation of metals, and Stillinger-Weber and Terso# potentials for the simulation of covalent systems, such as ceramics and semiconductors.

    Optimal spatiotemporal prediction of karstwater levels

    No full text
    In many fields of applied statistics samples from several locations in an investigation area are taken repeatedly over time. Especially in environmental monitoring the chemical and physics conditions in water, air and soil are measured using fixed and possibly mobile monitoring stations. The monitoring studies are aimed to model the phenomenon of interest (e.g. ground-level ozone, rain fall acidity or groundwater levels in karststone) and to predict the phenomenon at unsampled locations as well as into the future. For this purposes the spatiotemporal dynamic linear model is proposed, which builds up the framework for recursive best linear predictions. On one hand the spatiotemporal recursive best linear predictor is strongly connected with the predictors arising from the Kalman filter. On the other hand, this spatiotemporal predictor includes the method of linear Bayesian kriging as a special case. Thus the proposed method for spatiotemporal prediction is related to frequently used geostatistical and time series analysis methods. The spatiotemporal modeling and prediction approach will be applied to hydrogeological data of yearly averaged karstwater levels from 50 wells monitoring a Triassic karstwater reservoir in a mining region of Hungary from 1970 to 1990. (orig.)Available from TIB Hannover: RR 8460(1999,15) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore