184 research outputs found

    Aerodynamic imaging by mosquitoes inspires a surface detector for autonomous flying vehicles

    Get PDF
    Some flying animals use active sensing to perceive and avoid obstacles. Nocturnal mosquitoes exhibit a behavioral response to divert away from surfaces when vision is unavailable, indicating a short-range, mechanosensory collision-avoidance mechanism. We suggest that this behavior is mediated by perceiving modulations of their self-induced airflow patterns as they enter a ground or wall effect. We used computational fluid dynamics simulations of low-altitude and near-wall flights based on in vivo high-speed kinematic measurements to quantify changes in the self-generated pressure and velocity cues at the sensitive mechanosensory antennae. We validated the principle that encoding aerodynamic information can enable collision avoidance by developing a quadcopter with a sensory system inspired by the mosquito. Such low-power sensing systems have major potential for future use in safer rotorcraft control systems

    Синтез нечетких систем автоматического управления генетическими алгоритмами по векторным критериям в среде MATLAB

    Get PDF
    Задачи многокритериального параметрического синтеза систем управления сведены к задачам оптимизации векторных целевых функций, решение которых позволяет удержать процесс синтеза систем в допустимой области. Для оптимизации векторных целевых функций систем автоматического управления модифицированы бинарный и непрерывный генетические алгоритмы. Показана эффективность применения модифицированных генетических алгоритмов для синтеза систем управления путем оптимизации векторных целевых функций. Рассмотрение задач синтеза линейных и нечетких ПИД регуляторов показало, что в задаче синтеза нечеткого регулятора определяется вектор переменных параметров большей размерности, а в модели системы управления вместо линейных уравнений применяются нелинейные уравнения с использованием системы нечеткого вывода

    Preventive medical care in remote Aboriginal communities in the Northern Territory: a follow-up study of the impact of clinical guidelines, computerised recall and reminder systems, and audit and feedback

    Get PDF
    Background Interventions to improve delivery of preventive medical services have been shown to be effective in North America and the UK. However, there are few studies of the extent to which the impact of such interventions has been sustained, or of the impact of such interventions in disadvantaged populations or remote settings. This paper describes the trends in delivery of preventive medical services following a multifaceted intervention in remote community health centres in the Northern Territory of Australia. Methods The intervention comprised the development and dissemination of best practice guidelines supported by an electronic client register, recall and reminder systems and associated staff training, and audit and feedback. Clinical records in seven community health centres were audited at regular intervals against best practice guidelines over a period of three years, with feedback of audit findings to health centre staff and management. Results Levels of service delivery varied between services and between communities. There was an initial improvement in service levels for most services following the intervention, but improvements were in general not fully sustained over the three year period. Conclusions Improvements in service delivery are consistent with the international experience, although baseline and follow-up levels are in many cases higher than reported for comparable studies in North America and the UK. Sustainability of improvements may be achieved by institutionalisation of relevant work practices and enhanced health centre capacity

    Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody

    Get PDF
    <b>BACKGROUND:</b> In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo.<p></p> <b>RESULTS:</b> Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134.<p></p> <b>CONCLUSIONS:</b> The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.<p></p&gt

    Production and perception of situationally variable alarm calls in wild tufted capuchin monkeys (Cebus apella nigritus)

    Get PDF
    Many mammalian and avian species produce conspicuous vocalizations upon encountering a predator, but vary their calling based on risk urgency and/or predator type. Calls falling into the latter category are termed “functionally referential” if they also elicit predator-appropriate reactions in listeners. Functionally referential alarm calling has been well documented in a number of Old World monkeys and lemurs, but evidence among Neotropical primates is limited. This study investigates the alarm call system of tufted capuchin monkeys (Cebus apella nigritus) by examining responses to predator and snake decoys encountered at various distances (reflecting differences in risk urgency). Observations in natural situations were conducted to determine if predator-associated calls were given in additional contexts. Results indicate the use of three call types. “Barks” are elicited exclusively by aerial threats, but the call most commonly given to terrestrial threats (the “hiccup”) is given in nonpredatory contexts. The rate in which this latter call is produced reflects risk urgency. Playbacks of these two call types indicate that each elicits appropriate antipredator behaviors. The third call type, the “peep,” seems to be specific to terrestrial threats, but it is unknown if the call elicits predator-specific responses. “Barks” are thus functionally referential aerial predator calls, while “hiccups” are better seen as generalized disturbance calls which reflect risk urgency. Further evidence is needed to draw conclusions regarding the “peep.” These results add to the evidence that functionally referential aerial predator alarm calls are ubiquitous in primates, but that noncatarrhine primates use generalized disturbance calls in response to terrestrial threats

    Variation in the Meaning of Alarm Calls in Verreaux’s and Coquerel’s Sifakas (Propithecus verreauxi, P. coquereli)

    Get PDF
    The comprehension and usage of primate alarm calls appear to be influenced by social learning. Thus, alarm calls provide flexible behavioral mechanisms that may allow animals to develop appropriate responses to locally present predators. To study this potential flexibility, we compared the usage and function of 3 alarm calls common to 2 closely related sifaka species (Propithecus verreauxi and P. coquereli), in each of 2 different populations with different sets of predators. Playback studies revealed that both species in both of their respective populations emitted roaring barks in response to raptors, and playbacks of this call elicited a specific anti-raptor response (look up and climb down). However, in Verreaux’s sifakas, tchi-faks elicited anti-terrestrial predator responses (look down, climb up) in the population with a higher potential predation threat by terrestrial predators, whereas tchi-faks in the other population were associated with nonspecific flight responses. In both populations of Coquerel’s sifakas, tchi-fak playbacks elicited anti-terrestrial predator responses. More strikingly, Verreaux’s sifakas exhibited anti-terrestrial predator responses after playbacks of growls in the population with a higher threat of predation by terrestrial predators, whereas Coquerel’s sifakas in the raptor-dominated habitat seemed to associate growls with a threat by raptors; the 2 other populations of each species associated a mild disturbance with growls. We interpret this differential comprehension and usage of alarm calls as the result of social learning processes that caused changes in signal content in response to changes in the set of predators to which these populations have been exposed since they last shared a common ancestor

    A thalamic reticular networking model of consciousness

    Get PDF
    <p>Abstract</p> <p>[Background]</p> <p>It is reasonable to consider the thalamus a primary candidate for the location of consciousness, given that the thalamus has been referred to as the gateway of nearly all sensory inputs to the corresponding cortical areas. Interestingly, in an early stage of brain development, communicative innervations between the dorsal thalamus and telencephalon must pass through the ventral thalamus, the major derivative of which is the thalamic reticular nucleus (TRN). The TRN occupies a striking control position in the brain, sending inhibitory axons back to the thalamus, roughly to the same region where they receive afferents.</p> <p>[Hypotheses]</p> <p>The present study hypothesizes that the TRN plays a pivotal role in dynamic attention by controlling thalamocortical synchronization. The TRN is thus viewed as a functional networking filter to regulate conscious perception, which is possibly embedded in thalamocortical networks. Based on the anatomical structures and connections, modality-specific sectors of the TRN and the thalamus appear to be responsible for modality-specific perceptual representation. Furthermore, the coarsely overlapped topographic maps of the TRN appear to be associated with cross-modal or unitary conscious awareness. Throughout the latticework structure of the TRN, conscious perception could be accomplished and elaborated through accumulating intercommunicative processing across the first-order input signal and the higher-order signals from its functionally associated cortices. As the higher-order relay signals run cumulatively through the relevant thalamocortical loops, conscious awareness becomes more refined and sophisticated.</p> <p>[Conclusions]</p> <p>I propose that the thalamocortical integrative communication across first- and higher-order information circuits and repeated feedback looping may account for our conscious awareness. This TRN-modulation hypothesis for conscious awareness provides a comprehensive rationale regarding previously reported psychological phenomena and neurological symptoms such as blindsight, neglect, the priming effect, the threshold/duration problem, and TRN-impairment resembling coma. This hypothesis can be tested by neurosurgical investigations of thalamocortical loops via the TRN, while simultaneously evaluating the degree to which conscious perception depends on the severity of impairment in a TRN-modulated network.</p

    The potential to encode sex, age, and individual identity in the alarm calls of three species of Marmotinae

    Get PDF
    In addition to encoding referential information and information about the sender’s motivation, mammalian alarm calls may encode information about other attributes of the sender, providing the potential for recognition among kin, mates, and neighbors. Here, we examined 96 speckled ground squirrels (Spermophilus suslicus), 100 yellow ground squirrels (Spermophilus fulvus) and 85 yellow-bellied marmots (Marmota flaviventris) to determine whether their alarm calls differed between species in their ability to encode information about the caller’s sex, age, and identity. Alarm calls were elicited by approaching individually identified animals in live-traps. We assume this experimental design modeled a naturally occurring predatory event, when receivers should acquire information about attributes of a caller from a single bout of alarm calls. In each species, variation that allows identification of the caller’s identity was greater than variation allowing identification of age or sex. We discuss these results in relation to each species’ biology and sociality
    corecore