45 research outputs found
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
The Mass Distribution and Rotation Curve in the Galaxy
The mass distribution in the Galaxy is determined by dynamical and
photometric methods. Rotation curves are the major tool for determining the
dynamical mass distribution in the Milky Way and spiral galaxies. The
photometric (statistical) method utilizes luminosity profiles from optical and
infrared observations, and assumes empirical values of the mass-to-luminosity
(M/L) ratio to convert the luminosity to mass. In this chapter the dynamical
method is described in detail, and rotation curves and mass distribution in the
Milky Way and nearby spiral galaxies are presented. The dynamical method is
categorized into two methods: the decomposition method and direct method. The
former fits the rotation curve by calculated curve assuming several mass
components such as a bulge, disk and halo, and adjust the dynamical parameters
of each component. Explanations are given of the mass profiles as the de
Vaucouleurs law, exponential disk, and dark halo profiles inferred from
numerical simulations. Another method is the direct method, with which the mass
distribution can be directly calculated from the data of rotation velocities
without employing any mass models. Some results from both methods are
presented, and the Galactic structure is discussed in terms of the mass.
Rotation curves and mass distributions in external galaxies are also discussed,
and the fundamental mass structures are shown to be universal.Comment: 54 pages, 25 figures, in 'Planets, Stars and Stellar Systems',
Springer, Vol. 5, ed. G. Gilmore, Chap. 19. Note: Preprint with full figures
is available from http://www.ioa.s.u-tokyo.ac.jp/~sofue/htdocs/2013psss
The factors affecting the development of the musical performance : A study on the musical performance in Shanghai
The development of musical theatre in china is still in its initial stage, only a few big theatres have the ability of operating musical performance, and at this time, musical theatre is only performed in few big cities in China, like Shanghai and Beijing. The the-sis focuses on the development of musical theatre in Shanghai. As an entertainment ac-tivity and also one of the performing arts, the demand for musical theatre could be affect by many factors like educational background, income and competition from other forms of entertainment activities. There were many previous studies about the performing arts which also focused on the factors like education and income, however, the level of con-tributions of these factors to the development of different forms of performing arts are different. By reviewing related previous literatures and analyzing the data collected from Shanghai Grand Theatre which bases on a meta analysis of previous studies of performing arts, the thesis explores the current situation of the development of the mus-ical performance in Shanghai and studies various factors that affect the demand for musical theatre, as a result, a deeper understanding of how factors like educational background, income, competition among forms of entertainment activities etc. affect the development of musical theatre in Shanghai wish to be provided