79 research outputs found

    No effect of creatine supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats

    Get PDF
    Background: Exacerbated oxidative stress is thought to be a mediator of arterial hypertension. It has been postulated that creatine (Cr) could act as an antioxidant agent preventing increased oxidative stress. The aim of this study was to investigate the effects of nine weeks of Cr or placebo supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats (SHR). Findings: Lipid hydroperoxidation, one important oxidative stress marker, remained unchanged in the coronary artery (Cr: 12.6 +/- 1.5 vs. Pl: 12.2 +/- 1.7 nmol.mg(-1); p = 0.87), heart (Cr: 11.5 +/- 1.8 vs. Pl: 14.6 +/- 1.1 nmol.mg(-1); p = 0.15), plasma (Cr: 67.7 +/- 9.1 vs. Pl: 56.0 +/- 3.2 nmol.mg(-1); p = 0.19), plantaris (Cr: 10.0 +/- 0.8 vs. Pl: 9.0 +/- 0.8 nmol.mg(-1); p = 0.40), and EDL muscle (Cr: 14.9 +/- 1.4 vs. Pl: 17.2 +/- 1.5 nmol.mg(-1); p = 0.30). Additionally, Cr supplementation affected neither arterial blood pressure nor heart structure in SHR (p > 0.05). Conclusions: Using a well-known experimental model of systemic arterial hypertension, this study did not confirm the possible therapeutic effects of Cr supplementation on oxidative stress and cardiovascular dysfunction associated with arterial hypertension.FAPES

    A genomic catalog of Earth’s microbiomes

    Get PDF
    The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes
    • …
    corecore