4 research outputs found

    Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization.

    Get PDF
    The monitoring of the cardiac output (CO) and other hemodynamic parameters, traditionally performed with the thermodilution method via a pulmonary artery catheter (PAC), is now increasingly done with the aid of less invasive and much easier to use devices. When used within the context of a hemodynamic optimization protocol, they can positively influence the outcome in both surgical and non-surgical patient populations. While these monitoring tools have simplified the hemodynamic calculations, they are subject to limitations and can lead to erroneous results if not used properly. In this article we will review the commercially available minimally invasive CO monitoring devices, explore their technical characteristics and describe the limitations that should be taken into consideration when clinical decisions are made

    Dynamic control of salt intrusion in the Mark-Vliet river system, The Netherlands

    Get PDF
    The Volkerak-Zoom Lake is an enclosed part of the estuarine delta in the southwest of the Netherlands and exists as such since 1987. The current freshwater lake experienced a deterioration in water and ecological quality. Especially cyanobacteria are a serious problem. To solve this problem it is proposed to reintroduce salt water and tidal dynamics in the Volkerak-Zoom Lake. However, this will affect the water quality of the Mark-Vliet River system that drains into the lake. Each of the two branches of the Mark-Vliet River system is separated from the Volkerak-Zoom Lake by a lock and drainage sluice. Salt intrusion via the locks may hamper the intake of freshwater by the surrounding polders. Salt intrusion can be reduced by increasing the discharge in the river system. In this study we used the hydrodynamic SOBEK model to run different strategies with the aim to minimize the additional discharge needed to reduce chloride concentrations. Dynamic control of the sluices downstream and a water inlet upstream based on real-time chloride concentrations is able to generate the desired discharges required to maintain the chloride concentrations at the polder intake locations below the threshold level and to reduce the amount of water required by more than 50% compared to a situation with a constant discharge. Other effective measures consist of relocating the most downstream polder intakes more upstream, reducing the downstream cross section of the Vliet to increase flow velocities and measures that reduce the inflow of salt water via the locks. This study shows that dynamic control is a promising technique in regulated streams to alleviate water quality problems by controlled flushing of the system.Sanitary EngineeringCivil Engineering and Geoscience

    Mesure semi-invasive du débit cardiaque basé sur le contour du pouls: étude et analyse

    No full text

    Cultured Meat: Meat Industry Hand in Hand with Biomedical Production Methods

    No full text
    corecore