67 research outputs found
Structural MRI studies of language function in the undamaged brain
In recent years, the demonstration that structural changes can occur in the human brain beyond those associated with development, ageing and neuropathology has revealed a new approach to studying the neural basis of behaviour. In this review paper, we focus on structural imaging studies of language that have utilised behavioural measures in order to investigate the neural correlates of language skills in the undamaged brain. We report studies that have used two different techniques: voxel-based morphometry of whole brain grey or white matter images and diffusion tensor imaging. At present, there are relatively few structural imaging studies of language. We group them into those that investigated (1) the perception of novel speech sounds, (2) the links between speech sounds and their meaning, (3) speech production, and (4) reading. We highlight the validity of the findings by comparing the results to those from functional imaging studies. Finally, we conclude by summarising the novel contribution of these studies to date and potential directions for future research
Semantic Dementia: a specific network-opathy
Semantic dementia (SD) is a unique syndrome in the frontotemporal lobar degeneration spectrum. Typically presenting as a progressive, fluent anomic aphasia, SD is the paradigmatic disorder of semantic memory with a characteristic anatomical profile of asymmetric, selective antero-inferior temporal lobe atrophy. Histopathologically, most cases show a specific pattern of abnormal deposition of protein TDP-43. This relatively close clinical, anatomical and pathological correspondence suggests SD as a promising target for future therapeutic trials. Here, we discuss outstanding nosological and neurobiological challenges posed by the syndrome and propose a pathophysiological model of SD based on sequential, regionally determined disintegration of a vulnerable neural network
Children with Reading Disability Show Brain Differences in Effective Connectivity for Visual, but Not Auditory Word Comprehension
Background: Previous literature suggests that those with reading disability (RD) have more pronounced deficits during semantic processing in reading as compared to listening comprehension. This discrepancy has been supported by recent neuroimaging studies showing abnormal activity in RD during semantic processing in the visual but not in the auditory modality. Whether effective connectivity between brain regions in RD could also show this pattern of discrepancy has not been investigated. Methodology/Principal Findings: Children (8- to 14-year-olds) were given a semantic task in the visual and auditory modality that required an association judgment as to whether two sequentially presented words were associated. Effective connectivity was investigated using Dynamic Causal Modeling (DCM) on functional magnetic resonance imaging (fMRI) data. Bayesian Model Selection (BMS) was used separately for each modality to find a winning family of DCM models separately for typically developing (TD) and RD children. BMS yielded the same winning family with modulatory effects on bottom-up connections from the input regions to middle temporal gyrus (MTG) and inferior frontal gyrus(IFG) with inconclusive evidence regarding top-down modulations. Bayesian Model Averaging (BMA) was thus conducted across models in this winning family and compared across groups. The bottom-up effect from the fusiform gyrus (FG) to MTG rather than the top-down effect from IFG to MTG was stronger in TD compared to RD for the visual modality. The stronge
Neuroimaging in Dementia
Dementia is a common illness with an incidence that is rising as the aged population increases. There are a number of neurodegenerative diseases that cause dementia, including Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal dementia, which is subdivided into the behavioral variant, the semantic variant, and nonfluent variant. Numerous other neurodegenerative illnesses have an associated dementia, including corticobasal degeneration, Creutzfeldt–Jakob disease, Huntington’s disease, progressive supranuclear palsy, multiple system atrophy, Parkinson’s disease dementia, and amyotrophic lateral sclerosis. Vascular dementia and AIDS dementia are secondary dementias. Diagnostic criteria have relied on a constellation of symptoms, but the definite diagnosis remains a pathologic one. As treatments become available and target specific molecular abnormalities, differentiating amongst the various primary dementias early on becomes essential. The role of imaging in dementia has traditionally been directed at ruling out treatable and reversible etiologies and not to use imaging to better understand the pathophysiology of the different dementias. Different brain imaging techniques allow the examination of the structure, biochemistry, metabolic state, and functional capacity of the brain. All of the major neurodegenerative disorders have relatively specific imaging findings that can be identified. New imaging techniques carry the hope of revolutionizing the diagnosis of neurodegenerative disease so as to obtain a complete molecular, structural, and metabolic characterization, which could be used to improve diagnosis and to stage each patient and follow disease progression and response to treatment. Structural and functional imaging modalities contribute to the diagnosis and understanding of the different dementias
Brain classification reveals the right cerebellum as the best biomarker of dyslexia
Background Developmental dyslexia is a specific cognitive disorder in reading acquisition that has genetic and neurological origins. Despite histological evidence for brain differences in dyslexia, we recently demonstrated that in large cohort of subjects, no differences between control and dyslexic readers can be found at the macroscopic level (MRI voxel), because of large variances in brain local volumes. In the present study, we aimed at finding brain areas that most discriminate dyslexic from control normal readers despite the large variance across subjects. After segmenting brain grey matter, normalizing brain size and shape and modulating the voxels' content, normal readers' brains were used to build a 'typical' brain via bootstrapped confidence intervals. Each dyslexic reader's brain was then classified independently at each voxel as being within or outside the normal range. We used this simple strategy to build a brain map showing regional percentages of differences between groups. The significance of this map was then assessed using a randomization technique. Results The right cerebellar declive and the right lentiform nucleus were the two areas that significantly differed the most between groups with 100% of the dyslexic subjects (N = 38) falling outside of the control group (N = 39) 95% confidence interval boundaries. The clinical relevance of this result was assessed by inquiring cognitive brain-based differences among dyslexic brain subgroups in comparison to normal readers' performances. The strongest difference between dyslexic subgroups was observed between subjects with lower cerebellar declive (LCD) grey matter volumes than controls and subjects with higher cerebellar declive (HCD) grey matter volumes than controls. Dyslexic subjects with LCD volumes performed worse than subjects with HCD volumes in phonologically and lexicon related tasks. Furthermore, cerebellar and lentiform grey matter volumes interacted in dyslexic subjects, so that lower and higher lentiform grey matter volumes compared to controls differently modulated the phonological and lexical performances. Best performances (observed in controls) corresponded to an optimal value of grey matter and they dropped for higher or lower volumes. Conclusion These results provide evidence for the existence of various subtypes of dyslexia characterized by different brain phenotypes. In addition, behavioural analyses suggest that these brain phenotypes relate to different deficits of automatization of language-based processes such as grapheme/phoneme correspondence and/or rapid access to lexicon entries. article available here: http://www.biomedcentral.com/1471-2202/10/6
A Common Left Occipito-Temporal Dysfunction in Developmental Dyslexia and Acquired Letter-By-Letter Reading?
We used fMRI to examine functional brain abnormalities of German-speaking dyslexics who suffer from slow effortful reading but not from a reading accuracy problem. Similar to acquired cases of letter-by-letter reading, the developmental cases exhibited an abnormal strong effect of length (i.e., number of letters) on response time for words and pseudowords.Corresponding to lesions of left occipito-temporal (OT) regions in acquired cases, we found a dysfunction of this region in our developmental cases who failed to exhibit responsiveness of left OT regions to the length of words and pseudowords. This abnormality in the left OT cortex was accompanied by absent responsiveness to increased sublexical reading demands in phonological inferior frontal gyrus (IFG) regions. Interestingly, there was no abnormality in the left superior temporal cortex which--corresponding to the onological deficit explanation--is considered to be the prime locus of the reading difficulties of developmental dyslexia cases.The present functional imaging results suggest that developmental dyslexia similar to acquired letter-by-letter reading is due to a primary dysfunction of left OT regions
It Takes Two–Skilled Recognition of Objects Engages Lateral Areas in Both Hemispheres
Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI) related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas
The need for harmonization and innovation of neuropsychological assessment in neurodegenerative dementias in Europe: consensus document of the Joint Program for Neurodegenerative Diseases Working Group
Cognitive, behavioural, and functional assessment is crucial in longitudinal studies of neurodegenerative dementias
(NDD). Central issues, such as the definition of the study population (asymptomatic, at risk, or individuals with dementia),
the detection of change/decline, and the assessment of relevant outcomes depend on quantitative measures
of cognitive, behavioural, and functional status.
Currently, we are far from having available reliable protocols and tools for the assessment of dementias in Europe. The
main problems are the heterogeneity of the tools used across different European countries, the lack of standardisation
of administration and scoring methods across centres, and the limited information available about the psychometric
properties of many tests currently in widespread use. This situation makes it hard to compare results across studies
carried out in different centres, thus hampering research progress, in particular towards the contribution to a “big data”
common data set.
We present here the results of a project funded by the Joint Program for Neurodegenerative Diseases (JPND) and by the
Italian Ministry of Health. The project aimed at providing a consensus framework for the harmonisation of assessment
tools to be applied to research in neurodegenerative disorders affecting cognition across Europe. A panel of European
experts reviewed the current methods of neuropsychological assessment, identified pending issues, and made
recommendations for the harmonisation of neuropsychological assessment of neurodegenerative dementias in Europe.
A consensus was achieved on the general recommendations to be followed in developing procedures and tools for
neuropsychological assessment, with the aim of harmonising tools and procedures to achieve more reliable data on the
cognitive-behavioural examination. The results of this study should be considered as a first step to enhancing a common
view and practise on NDD assessment across European countries
- …