3 research outputs found

    Pt/C nanocatalysts for methanol electrooxidation prepared by water-in-oil microemulsion method

    No full text
    Pt nanoparticles supported on Vulcan XC-72R were synthesized by water-in-oil microemulsion method. By incorporating different amounts of HCl as a capping agent in the precursor-containing water phase, nanoparticle shape was varied. Influencing the growth of certain facets leads to the changes of the particle shape depending on the preferential facets. As a result, nanoparticles exhibit some of the electrochemical features typical for single crystals. Commonly employed synthesis procedure for water-in-oil microemulsion method was altered with the addition of catalyst support in the system and changing the catalyst cleaning steps. Prepared catalysts were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and electrochemical methods. Activity and stability for methanol oxidation reaction (MOR), a structure-sensitive reaction, were tested. Electrochemical results reveal the influence of particle size, shape and exposed facets on the electrochemical processes. TEM investigations confirm electrochemical findings, while TGA verifies Pt loading in catalyst powder. Based on the results, optimal HCl concentration for cubic particle formation is determined, and structural effect on MOR activity and stability was tested. Cuboidal NPs show very good reaction activity and fair stability under applied experimental conditions

    Platinum nanoparticles supported on zirconia–carbon black nanocomposites for methanol oxidation reaction

    No full text
    [[abstract]]Platinum (Pt) nanoparticles supported on zirconia–carbon black nanocomposites (Zr–C), which annealed at different temperatures, used as Pt/Zr–C electrocatalysts for methanol oxidation reaction (MOR) are prepared and characterized in this study. Transmission electron microscope images and X-ray diffraction analysis showed that the diameters of Pt nanoparticles are around 3–4 nm. Electrocatalytic MOR performances of these Pt/Zr–C electrocatalysts are investigated by cyclic voltammetry, CO-stripping voltammetry, and chronoamperometry. All the Pt/Zr–C electrocatalysts synthesized in this study exhibited higher MOR efficiency than that of the commercial E-TEK Pt/C electrocatalyst, and the electrocatalyst using Zr–C support annealed at 300 °C, achieving the highest MOR efficiency among all the electrocatalysts.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]電子版[[booktype]]紙
    corecore