30 research outputs found

    Stellar Coronal and Wind Models: Impact on Exoplanets

    Full text link
    Surface magnetism is believed to be the main driver of coronal heating and stellar wind acceleration. Coronae are believed to be formed by plasma confined in closed magnetic coronal loops of the stars, with winds mainly originating in open magnetic field line regions. In this Chapter, we review some basic properties of stellar coronae and winds and present some existing models. In the last part of this Chapter, we discuss the effects of coronal winds on exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief: Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer Reference Work

    Congruence of tissue expression profiles from Gene Expression Atlas, SAGEmap and TissueInfo databases

    Get PDF
    BACKGROUND: Extracting biological knowledge from large amounts of gene expression information deposited in public databases is a major challenge of the postgenomic era. Additional insights may be derived by data integration and cross-platform comparisons of expression profiles. However, database meta-analysis is complicated by differences in experimental technologies, data post-processing, database formats, and inconsistent gene and sample annotation. RESULTS: We have analysed expression profiles from three public databases: Gene Expression Atlas, SAGEmap and TissueInfo. These are repositories of oligonucleotide microarray, Serial Analysis of Gene Expression and Expressed Sequence Tag human gene expression data respectively. We devised a method, Preferential Expression Measure, to identify genes that are significantly over- or under-expressed in any given tissue. We examined intra- and inter-database consistency of Preferential Expression Measures. There was good correlation between replicate experiments of oligonucleotide microarray data, but there was less coherence in expression profiles as measured by Serial Analysis of Gene Expression and Expressed Sequence Tag counts. We investigated inter-database correlations for six tissue categories, for which data were present in the three databases. Significant positive correlations were found for brain, prostate and vascular endothelium but not for ovary, kidney, and pancreas. CONCLUSION: We show that data from Gene Expression Atlas, SAGEmap and TissueInfo can be integrated using the UniGene gene index, and that expression profiles correlate relatively well when large numbers of tags are available or when tissue cellular composition is simple. Finally, in the case of brain, we demonstrate that when PEM values show good correlation, predictions of tissue-specific expression based on integrated data are very accurate

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients

    The European Hematology Association Roadmap for European Hematology Research. A Consensus Document

    Get PDF
    Abstract The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at Euro 23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine sections in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Received December 15, 2015. Accepted January 27, 2016. Copyright © 2016, Ferrata Storti Foundatio

    Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers

    Full text link

    Yeast vacuoles fragment in an asymmetrical two-phase process with distinct protein requirements.

    Get PDF
    Yeast vacuoles fragment and fuse in response to environmental conditions, such as changes in osmotic conditions or nutrient availability. Here we analyze osmotically induced vacuole fragmentation by time-lapse microscopy. Small fragmentation products originate directly from the large central vacuole. This happens by asymmetrical scission rather than by consecutive equal divisions. Fragmentation occurs in two distinct phases. Initially, vacuoles shrink and generate deep invaginations that leave behind tubular structures in their vicinity. Already this invagination requires the dynamin-like GTPase Vps1p and the vacuolar proton gradient. Invaginations are stabilized by phosphatidylinositol 3-phosphate (PI(3)P) produced by the phosphoinositide 3-kinase complex II. Subsequently, vesicles pinch off from the tips of the tubular structures in a polarized manner, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol-3,5-bisphosphate and the Fab1 complex. It is accelerated by the PI(3)P- and phosphatidylinositol 3,5-bisphosphate-binding protein Atg18p. Thus vacuoles fragment in two steps with distinct protein and lipid requirements

    Psychiatric comorbidity as predictor of costs in back pain patients undergoing disc surgery: a longitudinal observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Psychiatric comorbidity is common in back pain patients undergoing disc surgery and increases economic costs in many areas of health. The objective of this study was to analyse psychiatric comorbidity as predictor of direct and indirect costs in back pain patients undergoing disc surgery in a longitudinal study design.</p> <p>Methods</p> <p>A sample of 531 back pain patients was interviewed after an initial disc surgery (T0), 3 months (T1) and 15 months (T2) using the Composite International Diagnostic Interview to assess psychiatric comorbidity and a modified version of the Client Sociodemographic and Service Receipt Inventory to assess resource utilization and lost productivity for a 3-month period prior interview. Health care utilization was monetarily valued by unit costs and productivity by labour costs. Costs were analysed using random coefficient models and bootstrap techniques.</p> <p>Results</p> <p>Psychiatric comorbidity was associated with significantly (p < 0.05) increased direct (+664 Euro) and indirect costs (+808 Euro) at T0. The direct cost difference predominantly resulted from medical health care utilization and was nearly unchanged at T2. Further important cost predictors were clinical variables like the presence of chronic medical disease, the number of previous disc surgeries, and time and gender.</p> <p>Conclusion</p> <p>Psychiatric comorbidity presents an important predictor of direct and indirect costs in back pain patients undergoing disc surgery, even if patients do not utilize mental health care. This effect seems to be stable over time. More attention should be given to psychiatric comorbidity and cost-effective treatments should be applied to treat psychiatric comorbidity in back pain patients undergoing disc surgery to reduce health care utilization and costs associated with psychiatric comorbidity.</p

    The septin CDCrel-1 binds syntaxin and inhibits exocytosis

    Full text link
    Septins are GTPases required for the completion of cytokinesis in diverse organisms, yet their roles in cytokinesis or other cellular processes remain unknown. Here we describe studies of a newly identified septin, CDCrel-1, which is predominantly expressed in the nervous system. This protein was associated with membrane fractions, and a significant fraction of the protein copurified and coprecipitated with synaptic vesicles. In detergent extracts, CDCrel-1 and another septin, Nedd5, immunoprecipitated with the SNARE protein syntaxin by directly binding to syntaxin via the SNARE interaction domain. Transfection of HIT-T15 cells with wild-type CDCrel-1 inhibited secretion, whereas GTPase dominant-negative mutants enhanced secretion. These data suggest that septins may regulate vesicle dynamics through interactions with syntaxin
    corecore