10,669 research outputs found

    Competition and interaction of polydisperse bubbles in polymer foams

    Get PDF
    The e®ects of interactions between bubbles of di®erent sizes during bubble growth in a polymeric foam are investigated. Two models are used: a two-dimensional sim-ulation in which both the e®ects of gas di®usion through the polymer and bubble interactions through °uid stresses are included, and a three-dimensional model in which bubbles are assumed to interact only through direct competition for gas, and di®usion of gas into the bubbles is instantaneous. In the two-dimensional model, two di®erent bubble sizes are used in a hexagonal array. For slow gas di®usion, the additional polymer stresses have little e®ect on the ¯nal bubble size distribution. For faster gas di®usion the growth occurs in two phases, just as was found in earlier work for isolated bubbles: an initial rapid viscous phase and a later phase controlled by the rate of polymer relaxation. In this later phase, polymers in the windows between neighbouring bubbles become highly stretched and these regions of high stress determine the dynamics of the growth. In the three-dimensional model we consider the e®ects of rheology on a pair of di®erent-sized spherical bubbles, interacting only through competition for available gas. Viscoelastic e®ects result in a wider distribution of bubble volumes than would be found for a Newtonian °uid. Key words: Polymeric °uid; bubble growth; foam; bubble interactions; size distribution ¤ To whom correspondence should be addressed

    Examination of adipocere formation in a cold water environment

    Full text link
    Adipocere is a late-stage postmortem decomposition product that forms from the lipids present in soft tissue. Its formation in aquatic environments is typically related to the presence of a moist, warm, anaerobic environment, and the effect of decomposer microorganisms. The ideal temperature range for adipocere formation is considered to be 21-45°C and is correlated to the optimal conditions for bacterial growth and enzymatic release. However, adipocere formation has been reported in cooler aquatic environments at considerable depths. This study aimed to investigate the chemical process of adipocere formation in a cold freshwater environment in Lake Ontario, Canada. Porcine tissue was used as a human tissue analogue and submerged at two depths (i.e., 10 and 30 feet) in the trophogenic zone of the lake. Samples were collected at monthly postmortem submersion intervals and analysed using diffuse reflectance infrared Fourier transform spectroscopy to provide a qualitative profile of the lipid degradation and adipocere formation process. Early stage adipocere formation occurred rapidly in the cold water environment and proceeded to intermediate stage adipocere formation by the second month of submersion. However, further adipocere formation was inhibited in the third month of the study when temperatures approached the freezing point. The depth of submergence did not influence the chemical conversion process as similar stages of adipocere formation occurred at both depths investigated. The study demonstrated that adipocere can form rapidly, even on small amounts of soft tissue, which may be representative of dismembered or disarticulated limbs discovered in an aquatic environment. © 2010 Springer-Verlag

    Minimal basilar membrane motion in low-frequency hearing

    Get PDF
    Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea

    The evolution of pellet size and shape during spheronisation of an extruded microcrystalline cellulose paste

    Get PDF
    The process by which cylindrical rods of soft solid paste extrudate are converted into round pellets on a spheroniser (Marumeriser™) plate was studied by interrupting spheronisation tests and measuring the size and shape of the pellets. Batches of 20 identical rods (20 mm long, 3 mm diameter) generated by ram extrusion of 47 wt% microcrystalline cellulose/water paste were spheronised at rotational speeds, ω, between 1200 rpm and 1800 rpm on a laboratory spheroniser. The time to complete spheronisation was found to scale with ω−3.6, which was close to the ω−3dependency predicted by a simple collision model. Breakage occupied the first 10% of the process duration: rounding off was the rate-determining step. The evolution of pellet shape was classified into five stages, the duration of which was found to scale with spheronisation time. Pellet shape, quantified by aspect ratio, circularity, shape and angularity factors presented by Sukumaran and Ashmawy (2001), showed similar behaviour for all ω studied. A phenomenological model is proposed which identifies different routes for small and large rod breakage products.This is the accepted manuscript of an article originally published in Chemical Engineering Research and Design. The final published version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S0263876214000379

    Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor

    Full text link
    High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations and provide clues to the mechanism of high-Tc superconductivity. Here we use a combined neutron scattering and scanning tunneling spectroscopy (STS) to study the Tc evolution of electron-doped superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with Tc in a remarkably similar fashion to the electron tunneling modes in STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometer length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.Comment: 30 pages, 12 figures, supplementary information include

    Chiral Symmetry Versus the Lattice

    Get PDF
    After mentioning some of the difficulties arising in lattice gauge theory from chiral symmetry, I discuss one of the recent attempts to resolve these issues using fermionic surface states in an extra space-time dimension. This picture can be understood in terms of end states on a simple ladder molecule.Comment: Talk at the meeting "Computer simulations studies in condensed matter physics XIV" Athens, Georgia, Feb. 19-24, 2001. 14 page

    Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting

    Get PDF
    We present an analytical method to quantify clustering in super-resolution localization images of static surfaces in two dimensions. The method also describes how over-counting of labeled molecules contributes to apparent self-clustering and how the effective lateral resolution of an image can be determined. This treatment applies to clustering of proteins and lipids in membranes, where there is significant interest in using super-resolution localization techniques to probe membrane heterogeneity. When images are quantified using pair correlation functions, the magnitude of apparent clustering due to over-counting will vary inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. Over-counting does not yield apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (Fc{\epsilon}RI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM) and scanning electron microscopy (SEM). We find that apparent clustering of labeled IgE bound to Fc{\epsilon}RI detected with both methods arises from over-counting of individual complexes. Thus our results indicate that these receptors are randomly distributed within the resolution and sensitivity limits of these experiments.Comment: 22 pages, 5 figure

    Limit Cycles in Four Dimensions

    Full text link
    We present an example of a limit cycle, i.e., a recurrent flow-line of the beta-function vector field, in a unitary four-dimensional gauge theory. We thus prove that beta functions of four-dimensional gauge theories do not produce gradient flows. The limit cycle is established in perturbation theory with a three-loop calculation which we describe in detail.Comment: 12 pages, 1 figure. Significant revision of the interpretation of our result. Improved description of three-loop calculatio
    corecore