17 research outputs found

    Stochastic Modeling of B Lymphocyte Terminal Differentiation and Its Suppression by Dioxin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Upon antigen encounter, naïve B lymphocytes differentiate into antibody-secreting plasma cells. This humoral immune response is suppressed by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other dioxin-like compounds, which belong to the family of aryl hydrocarbon receptor (AhR) agonists.</p> <p>Results</p> <p>To achieve a better understanding of the immunotoxicity of AhR agonists and their associated health risks, we have used computer simulations to study the behavior of the gene regulatory network underlying B cell terminal differentiation. The core of this network consists of two coupled double-negative feedback loops involving transcriptional repressors Bcl-6, Blimp-1, and Pax5. Bifurcation analysis indicates that the feedback network can constitute a bistable system with two mutually exclusive transcriptional profiles corresponding to naïve B cells and plasma cells. Although individual B cells switch to the plasma cell state in an all-or-none fashion when stimulated by the polyclonal activator lipopolysaccharide (LPS), stochastic fluctuations in gene expression make the switching event probabilistic, leading to heterogeneous differentiation response among individual B cells. Moreover, stochastic gene expression renders the dose-response behavior of a population of B cells substantially graded, a result that is consistent with experimental observations. The steepness of the dose response curve for the number of plasma cells formed vs. LPS dose, as evaluated by the apparent Hill coefficient, is found to be inversely correlated to the noise level in Blimp-1 gene expression. Simulations illustrate how, through AhR-mediated repression of the AP-1 protein, TCDD reduces the probability of LPS-stimulated B cell differentiation. Interestingly, stochastic simulations predict that TCDD may destabilize the plasma cell state, possibly leading to a reversal to the B cell phenotype.</p> <p>Conclusion</p> <p>Our results suggest that stochasticity in gene expression, which renders a graded response at the cell population level, may have been exploited by the immune system to launch humoral immune response of a magnitude appropriately tuned to the antigen dose. In addition to suppressing the initiation of the humoral immune response, dioxin-like compounds may also disrupt the maintenance of the acquired immunity.</p

    Trichotillomania and related disorders in children and adolescents

    Full text link
    Eleven chronic hair pullers, 11 subjects with obsessive-compulsive disorder (OCD), and 11 subjects with a non-OCD anxiety disorder were assessed with structured interviews and the Child Behavior Checklist (CBCL). Only 4 hair pullers (36%) reported both rising tension and relief with hair pulling. Each group had significantly more internalizing than externalizing symptoms on the CBCL. Seven hair pullers (64%) had a lifetime history of at least one other axis I diagnosis. The results provide further evidence that trichotillomania in referred children and adolescents is usually a chronic disorder often associated with internalizing symptoms and psychiatric comorbidity. Rising tension followed by relief with hair pulling may be an unnecessary restriction in the diagnosis of childhood trichotillomania.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43954/1/10578_2006_Article_BF02353354.pd

    Tandospirone activates neuroendocrine and ERK (MAP kinase) signaling pathways specifically through 5-HT1A receptor mechanisms in vivo

    No full text
    Tandospirone, an azapirone, is a selective serotonin(1A) (5-HT1A) receptor agonist. The effects of tandospirone on plasma hormones and on mitogen-activated protein (MAP) kinase activity in the brain of male rats were studied. Tandospirone produced a time- and dose-dependent increase in plasma levels of oxytocin, adrenocorticotropin (ACTH), corticosterone, and prolactin. The minimal dose of tandospirone that led to a significant elevation of plasma oxytocin, ACTH, and prolactin levels was 1.0 mg/kg (s.c.), while the minimal dose for corticosterone release was 3.0 mg/kg (s.c.). The ED50 of tandospirone was 1.3 mg/kg for oxytocin, 1.2 mg/kg for ACTH, 3.0 mg/kg for corticosterone, and 0.24 mg/kg for prolactin. Pretreatment with the specific 5-HT1A receptor antagonist WAY 100,635 (0.3 mg/kg, s.c.) completely blocked the effects of tandospirone on plasma levels of oxytocin, ACTH, and corticosterone but shifted the dose-response curve for prolactin to the right. Tandospirone injection (10 mg/kg, s.c.) stimulated the MAP kinase signaling cascade, specifically the phosphorylation of p42/44 extracellular signal-regulated kinase (ERK). Western blot analysis revealed a significant increase in phosphorylated ERK (p-ERK) levels in the hypothalamic paraventricular nucleus (PVN) as well as the dorsal raphe nucleus 5 min following tandospirone injection. These increases were blocked by pretreatment with WAY 100,635 (0.3 mg/kg). The results are the first evidence that systemic 5-HT1A receptor agonist administration produces a rapid increase in p-ERK levels in vivo, providing further insight into the signaling mechanisms of the 5-HT1A receptor
    corecore