4 research outputs found

    Model-aided state estimation for quadrotor micro air vehicles amidst wind disturbances

    Full text link
    © 2014 IEEE. This paper extends the recently developed Model-Aided Visual-Inertial Fusion (MA-VIF) technique for quadrotor Micro Air Vehicles (MAV) to deal with wind disturbances. The wind effects are explicitly modelled in the quadrotor dynamic equations excluding the unobservable wind velocity component. This is achieved by a nonlinear observability of the dynamic system with wind effects. We show that using the developed model, the vehicle pose and two components of the wind velocity vector can be simultaneously estimated with a monocular camera and an inertial measurement unit. We also show that the MA-VIF is reasonably tolerant to wind disturbances, even without explicit modelling of wind effects and explain the reasons for this behaviour. Experimental results using a Vicon motion capture system are presented to demonstrate the effectiveness of the proposed method and validate our claims

    Robust Trajectory Tracking for Unmanned Aircraft Systems using a Nonsingular Terminal Modified Super-Twisting Sliding Mode Controller

    No full text
    International audiencePrecision trajectory tracking problem for Unmanned Aerial Systems (UAS) is addressed in this work. A novel algorithm that combines a Nonsingular Modified Super-Twisting Controller with a High Order Sliding Mode Observer to enable an aerial vehicle tracking a desired trajectory under the assumption that i) its translational velocities are not available and ii) there are unmodeled dynamics and external disturbances. The proposed Sliding Mode Controller is based on a nonlinear sliding mode surface that ensures that the position and velocity tracking errors of all system’s state variables converge to zero in finite time. Moreover, the proposed controller generates a continuous control signal eliminating the chattering phenomenon. Finally, simulation results and an extensive set of experiments are presented in order to illustrate the robustness and effectiveness of the proposed control strategy
    corecore