19 research outputs found

    Seasonal variations of the digestive tract of the Eurasian beaver castor fiber.

    Get PDF
    Forage availability for wild rodents varies with season. In turn, the composition of food can affect morphometric parameters of the digestive tract. This study was performed in Eurasian beavers (Castor fiber) whose population was close to extinction in most Eurasian countries, but has now increased. Due to the previous low number of studies, information about the effect of forage availability on the digestive tract morphology has previously been lacking. This study was performed using beavers captured from the natural environment during three seasons of different forage availability: winter, summer and autumn. It was found that the diet of the beaver varied during the year; in winter it was dominated by woody material consisting of willow shoots, whereas in summer the diet was primarily herbs, grass and leaves. Season also affected the mass of digested contents of the digestive tract. The digestive content increased in the caecum and colon in winter and autumn, when poor-quality food dominated the beaver's diet. The results indicated that the digestive tract parameters of beavers varied based on the composition of available forage

    How insects survive the cold: molecular mechanisms - a review

    Get PDF
    Insects vary considerably in their ability to survive low temperatures. The tractability of these organisms to experimentation has lead to considerable physiology-based work investigating both the variability between species and the actual mechanisms themselves. This has highlighted a range of strategies including freeze tolerance, freeze avoidance, protective dehydration and rapid cold hardening, which are often associated with the production of specific chemicals such as antifreezes and polyol cryoprotectants. But we are still far from identifying the critical elements behind over-wintering success and how some species can regularly survive temperatures below -20°C. Molecular biology is the most recent tool to be added to the insect physiologist’s armoury. With the public availability of the genome sequence of model insects such as Drosophila and the production of custom-made molecular resources, such as EST libraries and microarrays, we are now in a position to start dissecting the molecular mechanisms behind some of these well-characterised physiological responses. This review aims to provide a state of the art snapshot of the molecular work currently being conducted into insect cold tolerance and the very interesting preliminary results from such studies, which provide great promise for the future
    corecore