19 research outputs found

    Crop Biodiversity: An Unfinished Magnum Opus of Nature

    No full text
    Crop biodiversity is one of the major inventions of humanity through the process of domestication. It is also an essential resource for crop improvement to adapt agriculture to ever-changing conditions like global climate change and consumer preferences. Domestication and the subsequent evolution under cultivation have profoundly shaped the genetic architecture of this biodiversity. In this review, we highlight recent advances in our understanding of crop biodiversity. Topics include the reduction of genetic diversity during domestication and counteracting factors, a discussion of the relationship between parallel phenotypic and genotypic evolution, the role of plasticity in genotype × environment interactions, and the important role subsistence farmers play in actively maintaining crop biodiversity and in participatory breeding. Linking genotype and phenotype remains the holy grail of crop biodiversity studies

    Optimization of crop productivity in tomato using induced mutations in the florigen pathway

    No full text
    Naturally occurring genetic variation in the universal florigen flowering pathway has produced major advancements in crop domestication. However, variants that can maximize crop yields may not exist in natural populations. Here we show that tomato productivity can be fine-tuned and optimized by exploiting combinations of selected mutations in multiple florigen pathway components. By screening for chemically induced mutations that suppress the bushy, determinate growth habit of field tomatoes, we isolated a new weak allele of the florigen gene SINGLE FLOWER TRUSS (SFT) and two mutations affecting a bZIP transcription factor component of the 'florigen activation complex' (ref. 11). By combining heterozygous mutations, we pinpointed an optimal balance of flowering signals, resulting in a new partially determinate architecture that translated to maximum yields. We propose that harnessing mutations in the florigen pathway to customize plant architecture and flower production offers a broad toolkit to boost crop productivity

    Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.)

    No full text
    Plant aquaporins are a large and diverse family of water channel proteins that are essential for several physiological processes in living organisms. Numerous studies have linked plant aquaporins with a plethora of processes, such as nutrient acquisition, CO2 transport, plant growth and development, and response to abiotic stresses. However, little is known about this protein family in common bean. Here, we present a genome-wide identification of the aquaporin gene family in common bean (Phaseolus vulgaris L.), a legume crop essential for human nutrition. We identified 41 full-length coding aquaporin sequences in the common bean genome, divided by phylogenetic analysis into five sub-families (PIPs, TIPs, NIPs, SIPs and XIPs). Residues determining substrate specificity of aquaporins (i.e., NPA motifs and ar/R selectivity filter) seem conserved between common bean and other plant species, allowing inference of substrate specificity for these proteins. Thanks to the availability of RNA-sequencing datasets, expression levels in different organs and in leaves of wild and domesticated bean accessions were evaluated. Three aquaporins (PvTIP1;1, PvPIP2;4 and PvPIP1;2) have the overall highest mean expressions, with PvTIP1;1 having the highest expression among all aquaporins. We performed an EST database mining to identify drought-responsive aquaporins in common bean. This analysis showed a significant increase in expression for PvTIP1;1 in drought stress conditions compared to well-watered environments. The pivotal role suggested for PvTIP1;1 in regulating water homeostasis and drought stress response in the common bean should be verified by further field experimentation under drought stress
    corecore