7 research outputs found

    Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents

    Full text link
    We present a theory which explains how to achieve an enhancement of nonlinear effects in a thin layer of nonlinear medium by involving a planar periodic structure specially designed to bear a trapped-mode resonant regime. In particular, the possibility of a nonlinear thin metamaterial to produce the bistable response at a relatively low input intensity due to a large quality factor of the trapped-mode resonance is shown. Also a simple design of an all-dielectric low-loss silicon-based planar metamaterial which can provide an extremely sharp resonant reflection and transmission is proposed. The designed metamaterial is envisioned for aggregating with a pumped active medium to achieve an enhancement of quantum dots luminescence and to produce an all-dielectric analog of a 'lasing spaser'.Comment: 18 pages, 13 figure

    Optical manifestations of planar chirality

    No full text
    We report that planar chiral structures affect the polarization state of light in a manner similar to three-dimensional chiral (optical active) media. In experiments with artificial metal-on-silicon chiral planar gratings of 442 wallpaper group symmetry, containing millions of chiral elements per square centimeter, we observed rotation of the polarization azimuth in excess of 30_ of light diffracted from it. The rotation was found to change its sign for two enantiomeric forms of the media and to have components associated with both the structural arrangement and the chirality of individual structural elements
    corecore