13 research outputs found

    Transat—A Method for Detecting the Conserved Helices of Functional RNA Structures, Including Transient, Pseudo-Knotted and Alternative Structures

    Get PDF
    The prediction of functional RNA structures has attracted increased interest, as it allows us to study the potential functional roles of many genes. RNA structure prediction methods, however, assume that there is a unique functional RNA structure and also do not predict functional features required for in vivo folding. In order to understand how functional RNA structures form in vivo, we require sophisticated experiments or reliable prediction methods. So far, there exist only a few, experimentally validated transient RNA structures. On the computational side, there exist several computer programs which aim to predict the co-transcriptional folding pathway in vivo, but these make a range of simplifying assumptions and do not capture all features known to influence RNA folding in vivo. We want to investigate if evolutionarily related RNA genes fold in a similar way in vivo. To this end, we have developed a new computational method, Transat, which detects conserved helices of high statistical significance. We introduce the method, present a comprehensive performance evaluation and show that Transat is able to predict the structural features of known reference structures including pseudo-knotted ones as well as those of known alternative structural configurations. Transat can also identify unstructured sub-sequences bound by other molecules and provides evidence for new helices which may define folding pathways, supporting the notion that homologous RNA sequence not only assume a similar reference RNA structure, but also fold similarly. Finally, we show that the structural features predicted by Transat differ from those assuming thermodynamic equilibrium. Unlike the existing methods for predicting folding pathways, our method works in a comparative way. This has the disadvantage of not being able to predict features as function of time, but has the considerable advantage of highlighting conserved features and of not requiring a detailed knowledge of the cellular environment

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Replication–transcription conflicts in bacteria

    No full text
    DNA replication and transcription use the same template and occur concurrently in bacteria. The lack of temporal and spatial separation of these two processes leads to their conflict, and failure to deal with this conflict can result in genome alterations and reduced fitness. In recent years major advances have been made in understanding how cells avoid conflicts between replication and transcription and how such conflicts are resolved when they do occur. In this Review, we summarize these findings, which shed light on the significance of the problem and on how bacterial cells deal with unwanted encounters between the replication and transcription machineries.National Institutes of Health (U.S.) (grant GM084003)National Institutes of Health (U.S.) (grant GM41934)National Institutes of Health (U.S.) (postdoctoral fellowship GM093408)University of Washington. Department of MicrobiologyCancer Prevention and Research Institute of Texas (Training Program grant RP101499

    RNA Folding: Structure Prediction, Folding Kinetics and Ion Electrostatics

    No full text
    corecore