14 research outputs found

    Precision spectroscopy of helium in a magic wavelength optical dipole trap

    Full text link
    Improvements in both theory and frequency metrology of few-electron systems such as hydrogen and helium have enabled increasingly sensitive tests of quantum electrodynamics (QED), as well as ever more accurate determinations of fundamental constants and the size of the nucleus. At the same time advances in cooling and trapping of neutral atoms have revolutionized the development of increasingly accurate atomic clocks. Here, we combine these fields to reach the highest precision on an optical tranistion in the helium atom to date by employing a Bose-Einstein condensate confined in a magic wavelength optical dipole trap. The measured transition accurately connects the ortho- and parastates of helium and constitutes a stringent test of QED theory. In addition we test polarizability calculations and ultracold scattering properties of the helium atom. Finally, our measurement probes the size of the nucleus at a level exceeding the projected accuracy of muonic helium measurements currently being performed in the context of the proton radius puzzle

    CD8+ Lymphocytes Control Viral Replication in SIVmac239-Infected Rhesus Macaques without Decreasing the Lifespan of Productively Infected Cells

    Get PDF
    While CD8+ T cells are clearly important in controlling virus replication during HIV and SIV infections, the mechanisms underlying this antiviral effect remain poorly understood. In this study, we assessed the in vivo effect of CD8+ lymphocyte depletion on the lifespan of productively infected cells during chronic SIVmac239 infection of rhesus macaques. We treated two groups of animals that were either CD8+ lymphocyte-depleted or controls with antiretroviral therapy, and used mathematical modeling to assess the lifespan of infected cells either in the presence or absence of CD8+ lymphocytes. We found that, in both early (day 57 post-SIV) and late (day 177 post-SIV) chronic SIV infection, depletion of CD8+ lymphocytes did not result in a measurable increase in the lifespan of either short- or long-lived productively infected cells in vivo. This result indicates that the presence of CD8+ lymphocytes does not result in a noticeably shorter lifespan of productively SIV-infected cells, and thus that direct cell killing is unlikely to be the main mechanism underlying the antiviral effect of CD8+ T cells in SIV-infected macaques with high virus replication

    Evaluation of skin sensitivity after shock wave treatment in horses

    Full text link
    Objective: To evaluate the effects of shock wave treatment on cutaneous nerve function, compared with the effects of local nerve block and sedation. Animals: 18 clinically sound Swiss Warmbloods. Procedure: Horses were randomly allocated to 3 groups and received different amounts and types of shock waves (extracorporeal shock wave treatment [ESWT] or radial pressure wave treatment [RPWT]). Horses were sedated with xylazine and levomethadone. Shock waves were applied to the lateral palmar digital nerve at the level of the proximal sesamoid bones on 1 forelimb. Skin sensitivity was evaluated by means of an electrical stimulus at the coronary band before and 5 minutes after sedation and at 4, 24, and 48 hours after application of ESWT or RPWT. On the contralateral forelimb, skin sensitivity was tested before and 10 minutes after an abaxial sesamoid nerve block. Results: No significant changes in skin sensitivity were detected, regardless of the shock wave protocol applied. Mean reaction thresholds after sedation were more than twice the baseline thresholds. After the abaxial sesamoid block, no reaction was recorded in any of the horses. Conclusions and Clinical Relevance: Application of ESWT or RPWT to the palmar digital nerve had no effect on cutaneous sensation distal to the treated region for at least 2 days after application. The analgesic effect of sedation on reaction to electrical stimuli was distinct but varied among horses

    Serologic Responses to Recombinant Pneumocystis jirovecii Major Surface Glycoprotein among Ugandan Patients with Respiratory Symptoms

    Get PDF
    BACKGROUND: Little is known about the serologic responses to Pneumocystis jirovecii major surface glycoprotein (Msg) antigen in African cohorts, or the IgM responses to Msg in HIV-positive and HIV-negative persons with respiratory symptoms. METHODS: We conducted a prospective study of 550 patients, both HIV-positive (n = 467) and HIV-negative (n = 83), hospitalized with cough ≥2 weeks in Kampala, Uganda, to evaluate the association between HIV status, CD4 cell count, and other clinical predictors and antibody responses to P. jirovecii. We utilized ELISA to measure the IgM and IgG serologic responses to three overlapping recombinant fragments that span the P. jirovecii major surface glycoprotein: MsgA (amino terminus), MsgB (middle portion) and MsgC1 (carboxyl terminus), and to three variations of MsgC1 (MsgC3, MsgC8 and MsgC9). RESULTS: HIV-positive patients demonstrated significantly lower IgM antibody responses to MsgC1, MsgC3, MsgC8 and MsgC9 compared to HIV-negative patients. We found the same pattern of low IgM antibody responses to MsgC1, MsgC3, MsgC8 and MsgC9 among HIV-positive patients with a CD4 cell count <200 cells/µl compared to those with a CD4 cell count ≥200 cells/µl. HIV-positive patients on PCP prophylaxis had significantly lower IgM responses to MsgC3 and MsgC9, and lower IgG responses to MsgA, MsgC1, MsgC3, and MsgC8. In contrast, cigarette smoking was associated with increased IgM antibody responses to MsgC1 and MsgC3 but was not associated with IgG responses. We evaluated IgM and IgG as predictors of mortality. Lower IgM responses to MsgC3 and MsgC8 were both associated with increased in-hospital mortality. CONCLUSIONS: HIV infection and degree of immunosuppression are associated with reduced IgM responses to Msg. In addition, low IgM responses to MsgC3 and MsgC8 are associated with increased mortality
    corecore