10 research outputs found

    DIA1R Is an X-Linked Gene Related to Deleted In Autism-1

    Get PDF
    Background: Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Methodology/Principal Findings: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62 % similar overall (28 % identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Conclusions/Significance: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-lik

    Functions and Mechanisms of the Human Ribosome-Translocon Complex

    No full text
    The membrane of the endoplasmic reticulum (ER) in human cells harbors the protein translocon, which facilitates membrane insertion and translocation of almost every newly synthesized polypeptide targeted to organelles of the secretory pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins, which are associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, Sec61 channel opening and closing, and modification of precursor polypeptides in transit through the Sec61 complex. Recently, cryoelectron tomography of translocons in native ER membranes has given unprecedented insights into the architecture and dynamics of the native, ribosome-associated translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion or translocation of newly synthesized polypeptides as well as the possible roles of the Sec61 channel as a passive ER calcium leak channel and regulator of ATP/ADP exchange between cytosol and ER

    Osteoarthritis and osteoporosis: Clinical and research evidence of inverse relationship

    No full text

    Chaperones in the Endoplasmic Reticulum (ER): Function and Interaction Network

    No full text

    Anti-Arthritic Activity

    No full text
    corecore