39 research outputs found

    In Vitro Evaluation and Characterization of Newly Designed Alkylamidophospholipid Analogues as Anti-Human Immunodeficiency Virus Type 1 Agents

    Get PDF
    Our laboratories first reported two novel classes of complex synthetic lipids, including alkylamidophosphocholines (PC lipid; CP-51) and alkylamidophosphate ester-linked lipid-AZT conjugates (lipid-AZT conjugates; CP-92), with selective and potent activity against human immunodeficiency virus type 1 (HIV-1). To extend these observations, we synthesized additional PC lipids and lipid-AZT conjugates (INK and INK-AZT conjugate) to evaluate their structure-activity relationships by testing for selectivity against infectious wild-type (wt) and drug-resistant HIV-1 replication, virus fusogenic activity and toxicity for mouse bone marrow cells. PC lipid compounds with medium chain lengths at positions 1 and 2 gave an improved selective index (SI). INK-3, with 12 and 8 carbons and INK-15, with 10 and 12 carbons were among the most selective when evaluated in CEM-SS cells. INK-14, a lipid-AZT conjugate where AZT replaced the choline in PC lipid INK-3, gave the highest SI of > 1250 against both infectious wt HIV-1 replication in CEM-SS cells and a clinical isolate in peripheral blood leukocytes. Notably, the PC lipid compounds INK-3 and INK-15, but not the lipid-AZT conjugate INK-14, were potent inhibitors of matched pairs of AZT-sensitive and AZT-resistant HIV-1 clinical isolates. INK-3 also inhibited replication of HIV-2 and TIBO-resistant HIV-1, and inhibited HIV-1-mediated fusogenic activity by 78, 41 and 9% in a dose-dependent manner. The TC50 for mouse bone marrow cells was > 100 micrograms/ml for INK-3 compared to 9.15-14.17 micrograms/ml for CP-51 and 0.142-0.259 microgram/ml for AZT. These data suggest that optimum PC lipid compounds are significantly less toxic than AZT and have high potential as novel therapeutic agents for AIDS

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    In Vitro

    No full text
    corecore