15 research outputs found

    Epitope mapping of human herpesvirus-7 gp65 using monoclonal antibodies.

    No full text
    Human herpesvirus (HHV)-7 encodes a unique 65-kDa heparin-binding glycoprotein, designated gp65. This molecule is thought to play a role in virus attachment and entry. To obtain reagents to map the structure and function of HHV-7 gp65, we produced monoclonal antibodies to this molecule. Ten monoclonal antibodies reacting with gp65 on ELISA were subdivided in four groups on the basis of their isotype and differential reactivity with (i) native versus denatured forms of gp65, and (ii) mature (virion-associated) versus immature (cell-associated) forms of the molecule. We were able to map the binding epitopes for eight of these ten antibodies, and these were found to cluster to one site on gp65 (amino acids 239-278); within this region, the antibodies reacted with at least three distinct domains (244-251, 255-262, 263-278). The reasons for the apparent immunodominance of this region are uncertain. Taken together, this panel of antibodies constitutes an extensive and well-characterized set of HHV-7 specific antibodies that may have utility for future analyses of the structure/function of gp65, and for studies on the virus life cycl

    Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis

    No full text
    Pauci-immune focal necrotizing glomerulonephritis (FNGN) is a severe inflammatory disease associated with autoantibodies to neutrophil cytoplasmic antigens (ANCA). Here we characterize autoantibodies to lysosomal membrane protein-2 (LAMP-2) and show that they are a new ANCA subtype present in almost all individuals with FNGN. Consequently, its prevalence is nearly twice that of the classical ANCAs that recognize myeloperoxidase or proteinase-3. Furthermore, antibodies to LAMP-2 cause pauci-immune FNGN when injected into rats, and a monoclonal antibody to human LAMP-2 (H4B4) induces apoptosis of human microvascular endothelium in vitro. The autoantibodies in individuals with pauci-immune FNGN commonly recognize a human LAMP-2 epitope (designated P(41–49)) with 100% homology to the bacterial adhesin FimH, with which they cross-react. Rats immunized with FimH develop pauci-immune FNGN and also develop antibodies to rat and human LAMP-2. Finally, we show that infections with fimbriated pathogens are common before the onset of FNGN. Thus, FimH-triggered autoimmunity to LAMP-2 provides a previously undescribed clinically relevant molecular mechanism for the development of pauci-immune FNGN
    corecore