209 research outputs found
Plasma androgen concentrations in initial samples from spotted hyaenas immobilized with Zoletil (CI-744) reflect hormonal status estimated by GnRH challenge and immobilization stress response
The use of single samples to assess the androgen status of animals can be problematic owing to extensive short-term fluctuations in the concentrations of these hormones. Thus, this study evaluated a number of estimates for both testosterone and androstenedione status in the spotted hyaena (Crocuta crocuta),namely, initial samples, the immobilization stress response and the response to exogenous GnRH administration, for their mutual consistency. This study found that in animals immobilized with Zoletil and maintained on halothane, all three estimates show a good consistency. Moreover, the large variance in androgen status reported here within the sexes explains earlier contradictory results, and implies that the debate concerning the sex-specific differences in plasma androgens is confounded by other variables such as the reproductive and social status of the individuals included in the analysis
Electric Field Control of Shallow Donor Impurities in Silicon
We present a tight-binding study of donor impurities in Si, demonstrating the
adequacy of this approach for this problem by comparison with effective mass
theory and experimental results. We consider the response of the system to an
applied electric field: donors near a barrier material and in the presence of
an uniform electric field may undergo two different ionization regimes
according to the distance of the impurity to the Si/barrier interface. We show
that for impurities ~ 5 nm below the barrier, adiabatic ionization is possible
within switching times of the order of one picosecond, while for impurities ~
10 nm or more below the barrier, no adiabatic ionization may be carried out by
an external uniform electric field. Our results are discussed in connection
with proposed Si:P quantum computer architectures.Comment: 18 pages, 6 figures, submitted to PR
The institutional shaping of management: in the tracks of English individualism
Globalisation raises important questions about the shaping of economic action by cultural factors. This article explores the formation of what is seen by some as a prime influence on the formation of British management: individualism. Drawing on a range of historical sources, it argues for a comparative approach. In this case, the primary comparison drawn is between England and Scotland. The contention is that there is a systemic approach to authority in Scotland that can be contrasted to a personal approach in England. An examination of the careers of a number of Scottish pioneers of management suggests the roots of this systemic approach in practices of church governance. Ultimately this systemic approach was to take a secondary role to the personal approach engendered by institutions like the universities of Oxford and Cambridge, but it found more success in the different institutional context of the USA. The complexities of dealing with historical evidence are stressed, as is the value of taking a comparative approach. In this case this indicates a need to take religious practice as seriously as religious belief as a source of transferable practice. The article suggests that management should not be seen as a simple response to economic imperatives, but as shaped by the social and cultural context from which it emerges
Double quantum dot turnstile as an electron spin entangler
We study the conditions for a double quantum dot system to work as a reliable
electron spin entangler, and the efficiency of a beam splitter as a detector
for the resulting entangled electron pairs. In particular, we focus on the
relative strengths of the tunneling matrix elements, the applied bias and gate
voltage, the necessity of time-dependent input/output barriers, and the
consequence of considering wavepacket states for the electrons as they leave
the double dot to enter the beam splitter. We show that a double quantum dot
turnstile is, in principle, an efficient electron spin entangler or
entanglement filter because of the exchange coupling between the dots and the
tunable input/output potential barriers, provided certain conditions are
satisfied in the experimental set-up.Comment: published version; minor error correcte
Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa.
Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa
Superstripes and complexity in high-temperature superconductors
While for many years the lattice, electronic and magnetic complexity of
high-temperature superconductors (HTS) has been considered responsible for
hindering the search of the mechanism of HTS now the complexity of HTS is
proposed to be essential for the quantum mechanism raising the superconducting
critical temperature. The complexity is shown by the lattice heterogeneous
architecture: a) heterostructures at atomic limit; b) electronic heterogeneity:
multiple components in the normal phase; c) superconducting heterogeneity:
multiple superconducting gaps in different points of the real space and of the
momentum space. The complex phase separation forms an unconventional granular
superconductor in a landscape of nanoscale superconducting striped droplets
which is called the "superstripes" scenario. The interplay and competition
between magnetic orbital charge and lattice fluctuations seems to be essential
for the quantum mechanism that suppresses thermal decoherence effects at an
optimum inhomogeneity.Comment: 20 pages, 3 figures; J. Supercon. Nov. Mag. 201
- …