19 research outputs found

    The kinematic dipole in galaxy redshift surveys

    Get PDF
    In the concordance model of the Universe, the matter distribution - as observed in galaxy number counts or the intensity of line emission (such as the 21cm line of neutral hydrogen) - should have a kinematic dipole due to the Sun's motion relative to the CMB rest-frame. This dipole should be aligned with the kinematic dipole in the CMB temperature. Accurate measurement of the direction of the matter dipole will become possible with future galaxy surveys, and this will be a critical test of the foundations of the concordance model. The amplitude of the matter dipole is also a potential cosmological probe. We derive formulas for the amplitude of the kinematic dipole in galaxy redshift and intensity mapping surveys, taking into account the Doppler, aberration and other relativistic effects. The amplitude of the matter dipole can be significantly larger than that of the CMB dipole. Its redshift dependence encodes information on the evolution of the Universe and on the tracers, and we discuss possible ways to determine the amplitude.Comment: 10 pages, 5 figures. To appear in JCA

    The observed galaxy bispectrum from single-field inflation in the squeezed limit

    Get PDF
    Using the consistency relation in Fourier space, we derive the observed galaxy bispectrum from single- eld in ation in the squeezed limit, in which one of the three modes has a wavelength much longer than the other two. This provides a non-trivial check of the full computation of the bispectrum based on second-order cosmological perturbation theory in this limit. We show that gauge modes need to be carefully removed in the second-order cosmological perturbations in order to calculate the observed galaxy bispectrum in the squeezed limit. We then give an estimate of the e ective non- Gaussianity due to general-relativistic lightcone e ects that could mimic a primordial non-Gaussian signal

    Variable sound speed in interacting dark energy models

    Get PDF
    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to Λ\LambdaCDM.Comment: 19 pages, 8 figures, 1 tables; version accepted by JCA
    corecore