7 research outputs found

    Optimization of Suture-Free Laser-Assisted Vessel Repair by Solder-Doped Electrospun Poly(ε-caprolactone) Scaffold

    Get PDF
    Poor welding strength constitutes an obstacle in the clinical employment of laser-assisted vascular repair (LAVR) and anastomosis. We therefore investigated the feasibility of using electrospun poly(ε-caprolactone) (PCL) scaffold as reinforcement material in LAVR of medium-sized vessels. In vitro solder-doped scaffold LAVR (ssLAVR) was performed on porcine carotid arteries or abdominal aortas using a 670-nm diode laser, a solder composed of 50% bovine serum albumin and 0.5% methylene blue, and electrospun PCL scaffolds. The correlation between leaking point pressures (LPPs) and arterial diameter, the extent of thermal damage, structural and mechanical alterations of the scaffold following ssLAVR, and the weak point were investigated. A strong negative correlation existed between LPP and vessel diameter, albeit LPP (484 ± 111 mmHg) remained well above pathophysiological pressures. Histological analysis revealed that thermal damage extended into the medial layer with a well-preserved internal elastic lamina and endothelial cells. Laser irradiation of PCL fibers and coagulation of solder material resulted in a strong and stiff scaffold. The weak point of the ssLAVR modality was predominantly characterized by cohesive failure. In conclusion, ssLAVR produced supraphysiological LPPs and limited tissue damage. Despite heat-induced structural/mechanical alterations of the scaffold, PCL is a suitable polymer for weld reinforcement in medium-sized vessel ssLAVR

    Tendinopathy

    No full text
    Tendinopathy describes a complex multifaceted pathology of the tendon, characterized by pain, decline in function and reduced exercise tolerance. The most common overuse tendinopathies involve the rotator cuff tendon, medial and lateral elbow epicondyles, patellar tendon, gluteal tendons and the Achilles tendon. The prominent histological and molecular features of tendinopathy include disorganization of collagen fibres, an increase in the microvasculature and sensory nerve innervation, dysregulated extracellular matrix homeostasis, increased immune cells and inflammatory mediators, and enhanced cellular apoptosis. Although diagnosis is mostly achieved based on clinical symptoms, in some cases, additional pain-provoking tests and imaging might be necessary. Management consists of different exercise and loading programmes, therapeutic modalities and surgical interventions; however, their effectiveness remains ambiguous. Future research should focus on elucidating the key functional pathways implicated in clinical disease and on improved rehabilitation protocols
    corecore