16 research outputs found

    Persistence survey of Toxic Shock Syndrome toxin-1 producing Staphylococcus aureus and serum antibodies to this superantigen in five groups of menstruating women

    Get PDF
    Background: Menstrual Toxic Shock Syndrome (mTSS) is thought to be associated with the vaginal colonization with specific strains of Staphylococcus aureus TSST-1 in women who lack sufficient antibody titers to this toxin. There are no published studies that examine the seroconversion in women with various colonization patterns of this organism. Thus, the aim of this study was to evaluate the persistence of Staphylococcus aureus colonization at three body sites (vagina, nares, and anus) and serum antibody to toxic shock syndrome toxin-producing Staphylococcus aureus among a small group of healthy, menstruating women evaluated previously in a larger study. Methods: One year after the completion of that study, 311 subjects were recalled into 5 groups. Four samples were obtained from each participant at several visits over an additional 6-11 month period: 1) an anterior nares swab; 2) an anal swab; 3) a vagina swab; and 4) a blood sample. Gram stain, a catalase test, and a rapid S. aureus-specific latex agglutination test were performed to phenotypically identify S. aureus from sample swabs. A competitive ELISA was used to quantify TSST-1 production. Human TSST-1 IgG antibodies were determined from the blood samples using a sandwich ELISA method. Results: We found only 41% of toxigenic S. aureus and 35.5% of non-toxigenic nasal carriage could be classified as persistent. None of the toxigenic S. aureus vaginal or anal carriage could be classified as persistent. Despite the low persistence of S. aureus colonization, subjects colonized with a toxigenic strain were found to display distributions of antibody titers skewed toward higher titers than other subjects. Seven percent (5/75) of subjects became seropositive during recall, but none experienced toxic shock syndrome-like symptoms. Conclusions: Nasal carriage of S. aureus appears to be persistent and the best predicator of subsequent colonization, whereas vaginal and anal carriage appear to be more transient. From these findings, it appears that antibody titers in women found to be colonized with toxigenic S. aureus remained skewed toward higher titers whether or not the colonies were found to be persistent or transient in nature. This suggests that colonization at some point in time is sufficient to elevate antibody titer levels and those levels appear to be persistent. Results also indicate that women can become seropositive without experiencing signs or symptoms of toxic shock syndrome

    Extravasation of leukocytes in comparison to tumor cells

    Get PDF
    The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium. Thus, metastasis formation is indirectly susceptible to localization signals that are literally specific for the immune system. We herein compare the extravasation of leukocytes and tumor cells with regard to the involved receptors and the localization signals that direct the cells to certain organs and sites of the body

    Magnetic nanoparticles sensitize MCF-7 breast cancer cells to doxorubicin-induced apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance of breast cancer cells to the available chemotherapeutics is a major obstacle to successful treatment. Recent studies have shown that magnetic nanoparticles might have significant application in different medical fields including cancer treatment. The goal of this study is to verify the ability of magnetic nanoparticles to sensitize cancer cells to the clinically available chemotherapy.</p> <p>Methods</p> <p>The role of iron oxide nanoparticles, static magnetic field, or a combination in the enhancement of the apoptotic potential of doxorubicin against the resistant breast cancer cells, MCF-7 was evaluated using the MTT assay and the propidium iodide method.</p> <p>Results</p> <p>In the present study, results revealed that pre-incubation of MCF-7 cells with iron oxide nanoparticles before the addition of doxorubicin did not enhance doxorubicin-induced growth inhibition. Pre-incubation of MCF-7 cells with iron oxide nanoparticles followed by a static magnetic field exposure significantly (<it>P</it> < 0.05) increased doxorubicin-induced cytotoxicity. Sensitization with pre-exposure to the magnetic field was dose-dependent where the highest cytotoxicity was seen at 1 tesla. Further experiments revealed that the anti-proliferative effect of this treatment procedure is due to induction of apoptotic cell death.</p> <p>Conclusions</p> <p>These results might point to the importance of combining magnetic nanoparticles with a static magnetic field in treatment of doxorubicin-refractory breast cancer cells.</p
    corecore