4 research outputs found

    The advanced cyberinfrastructure research and education facilitators virtual residency: Toward a national cyberinfrastructure workforce

    Get PDF
    An Advanced Cyberinfrastructure Research and Education Facilitator (ACI-REF) works directly with researchers to advance the computing- and data-intensive aspects of their research, helping them to make effective use of Cyberinfrastructure (CI). The University of Oklahoma (OU) is leading a national "virtual residency" program to prepare ACI-REFs to provide CI facilitation to the diverse populations of Science, Technology, Engineering and Mathematics (STEM) researchers that they serve. Until recently, CI Facilitators have had no education or training program; the Virtual Residency program addresses this national need by providing: (1) training, specifically (a) summer workshops and (b) third party training opportunity alerts; (2) a community of CI Facilitators, enabled by (c) a biweekly conference call and (d) a mailing list

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed

    Modulation of immune responses by targeting CD169/Siglec-1 with the glycan ligand

    No full text
    A fundamental role in the plant-bacterium interaction for Gram-negative phytopathogenic bacteria is played by membrane constituents, such as proteins, lipopoly- or lipooligosaccharides (LPS, LOS) and Capsule Polysaccharides (CPS). In the frame of the understanding the molecular basis of plant bacterium interaction, the Gram-negative bacterium Agrobacterium vitis was selected in this study. It is a phytopathogenic member of the Rhizobiaceae family and it induces the crown gall disease selectively on grapevines (Vitis vinifera). A. vitis wild type strain F2/5, and its mutant in the quorum sensing gene ΔaviR, were studied. The wild type produces biosurfactants; it is considered a model to study surface motility, and it causes necrosis on grapevine roots and HR (Hypersensitive Response) on tobacco. Conversely, the mutant does not show any surface motility and does not produce any surfactant material; additionally, it induces neither necrosis on grape, nor HR on tobacco. Therefore, the two strains were analyzed to shed some light on the QS regulation of LOS structure and the consequent variation, if any, on HR response. LOS from both strains were isolated and characterized: the two LOS structures maintained several common features and differed for few others. With regards to the common patterns, firstly: the Lipid A region was not phosphorylated at C4 of the non reducing glucosamine but glycosylated by an uronic acid (GalA) unit, secondly: a third Kdo and the rare Dha (3-deoxy-lyxo-2-heptulosaric acid) moiety was present. Importantly, the third Kdo and the Dha residues were substituted by rhamnose in a not stoichiometric fashion, giving four different oligosaccharide species. The proportions among these four species, is the key difference between the LOSs from both the two bacteria. LOS from both strains and Lipid A from wild type A. vitis are now examined for their HR potential in tobacco leaves and grapevine roots
    corecore