8 research outputs found

    Template-induced nucleation for controlling crystal polymorphism: from molecular mechanisms to applications in pharmaceutical processing

    No full text
    Over the last two decades, the use of template surfaces to induce heterogeneous crystal nucleation has been explored primarily to address two different goals: first, as an alternative to the conventional seeding technique used for polymorph control and, second, as a technique to promote the nucleation rate in novel crystallisation processes and formulations. The former need conceivably arises due to the risk of crystallising a new polymorph despite pre-seeding the solution with the desired crystal form. In this context, we review ongoing efforts in the research area of template-induced crystallisation, covering both experimental and simulation studies directed towards deeper understanding of the underpinning mechanisms. In addition, we report on the use of template-induced crystal nucleation as a process intensification technology for formulating drug substances and as a technique for enabling nucleation and polymorphic control during continuous manufacturing of active pharmaceutical ingredients

    Influence of solvent polarity and supersaturation on template-induced nucleation of carbamazepine crystal polymorphs

    No full text
    Studies on the use of template surfaces to induce heterogeneous crystal nucleation have gained momentum in recent years-with potential applications in selective crystallisation of polymorphs and in the generation of seed crystals in a continuous crystallisation process. In developing a template-assisted solution crystallisation process, the kinetics of homogeneous versus heterogeneous crystal nucleation could be influenced by solute-solvent, solute-template, and solvent-template interactions. In this study, we report the effect of solvents of varying polarity on the nucleation of carbamazepine (CBZ) crystal polymorphs, a model active pharmaceutical ingredient. The experimental results demonstrate that functionalised template surfaces are effective in promoting crystallisation of either the metastable (form II) or stable (form III) polymorphs of CBZ only in moderately (methanol, ethanol, isopropanol) and low polar (toluene) solvents. A solvent with high polarity (acetonitrile) is thought to mask the template effect on heterogeneous nucleation due to strong solute-solvent and solvent-template interactions. The current study highlights that a quality-by-design (QbD) approach-considering the synergistic effects of solute concentration, solvent type, solution temperature, and template surface chemistry on crystal nucleation-is critical to the development of a template-induced crystallisation process
    corecore