494 research outputs found

    Fenestrated azygos A2 segment: a rare anatomic variation

    Get PDF

    Transgenic overexpression of miR-133a in skeletal muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a class of non-coding regulatory RNAs of ~22 nucleotides in length. miRNAs regulate gene expression post-transcriptionally, primarily by associating with the 3' untranslated region (UTR) of their regulatory target mRNAs. Recent work has begun to reveal roles for miRNAs in a wide range of biological processes, including cell proliferation, differentiation and apoptosis. Many miRNAs are expressed in cardiac and skeletal muscle, and dysregulated miRNA expression has been correlated with muscle-related disorders. We have previously reported that the expression of muscle-specific miR-1 and miR-133 is induced during skeletal muscle differentiation and miR-1 and miR-133 play central regulatory roles in myoblast proliferation and differentiation in vitro.</p> <p>Methods</p> <p>In this study, we measured the expression of miRNAs in the skeletal muscle of mdx mice, an animal model for human muscular dystrophy. We also generated transgenic mice to overexpress miR-133a in skeletal muscle.</p> <p>Results</p> <p>We examined the expression of miRNAs in the skeletal muscle of <it>mdx </it>mice. We found that the expression of muscle miRNAs, including miR-1a, miR-133a and miR-206, was up-regulated in the skeletal muscle of <it>mdx </it>mice. In order to further investigate the function of miR-133a in skeletal muscle in vivo, we have created several independent transgenic founder lines. Surprisingly, skeletal muscle development and function appear to be unaffected in miR-133a transgenic mice.</p> <p>Conclusions</p> <p>Our results indicate that miR-133a is dispensable for the normal development and function of skeletal muscle.</p

    Spreading of complex regional pain syndrome: not a random process

    Get PDF
    Complex regional pain syndrome (CRPS) generally remains restricted to one limb but occasionally may spread to other limbs. Knowledge of the spreading pattern of CRPS may lead to hypotheses about underlying mechanisms but to date little is known about this process. The objective is to study patterns of spread of CRPS from a first to a second limb and the factors associated with this process. One hundred and eighty-five CRPS patients were retrospectively evaluated. Cox’s proportional hazards model was used to evaluate factors that influenced spread of CRPS symptoms. Eighty-nine patients exhibited CRPS in multiple limbs. In 72 patients spread from a first to a second limb occurred showing a contralateral pattern in 49%, ipsilateral pattern in 30% and diagonal pattern in 14%. A trauma preceded the onset in the second limb in 37, 44 and 91%, respectively. The hazard of spread of CRPS increased with the number of limbs affected. Compared to patients with CRPS in one limb, patients with CRPS in multiple limbs were on average 7 years younger and more often had movement disorders. In patients with CRPS in multiple limbs, spontaneous spread of symptoms generally follows a contralateral or ipsilateral pattern whereas diagonal spread is rare and generally preceded by a new trauma. Spread is associated with a younger age at onset and a more severely affected phenotype. We argue that processes in the spinal cord as well as supraspinal changes are responsible for spontaneous spread in CRPS

    Elevated miR-499 Levels Blunt the Cardiac Stress Response

    Get PDF
    The heart responds to myriad stresses by well-described transcriptional responses that involve long-term changes in gene expression as well as more immediate, transient adaptations. MicroRNAs quantitatively regulate mRNAs and thus may affect the cardiac transcriptional output and cardiac function. Here we investigate miR-499, a microRNA embedded within a ventricular-specific myosin heavy chain gene, which is expressed in heart and skeletal muscle.We assessed miR-499 expression in human tissue to confirm its potential relevance to human cardiac gene regulation. Using a transgenic mouse model, we found that elevated miR-499 levels caused cellular hypertrophy and cardiac dysfunction in a dose-dependent manner. Global gene expression profiling revealed altered levels of the immediate early stress response genes (Egr1, Egr2 and Fos), ß-myosin heavy chain (Myh7), and skeletal muscle actin (Acta1). We verified the effect of miR-499 on the immediate early response genes by miR-499 gain- and loss-of-function in vitro. Consistent with a role for miR-499 in blunting the response to cardiac stress, asymptomatic miR-499-expressing mice had an impaired response to pressure overload and accentuated cardiac dysfunction.Elevated miR-499 levels affect cardiac gene expression and predispose to cardiac stress-induced dysfunction. miR-499 may titrate the cardiac response to stress in part by regulating the immediate early gene response

    Compulsive Internet Use Among Adolescents: Bidirectional Parent–Child Relationships

    Get PDF
    Although parents experience growing concerns about their children’s excessive internet use, little is known about the role parents can play to prevent their children from developing Compulsive Internet Use (CIU). The present study addresses associations between internet-specific parenting practices and CIU among adolescents, as well as the bidirectionality of these associations. Two studies were conducted: a cross-sectional study using a representative sample of 4,483 Dutch students and a longitudinal study using a self-selected sample of 510 Dutch adolescents. Results suggest that qualitatively good communication regarding internet use is a promising tool for parents to prevent their teenage children from developing CIU. Besides, parental reactions to excessive internet use and parental rules regarding the content of internet use may help prevent CIU. Strict rules about time of internet use, however, may promote compulsive tendencies. Finally, one opposite link was found whereby CIU predicted a decrease in frequency of parental communication regarding internet use

    Is the Rehbein procedure obsolete in the treatment of Hirschsprung’s disease?

    Get PDF
    Contains fulltext : 87916.pdf (publisher's version ) (Closed access)PURPOSE: After 25 years of practice and positive results of the Rehbein-procedure (RB) for children with Hirschsprung Disease (HD), we changed to the less invasive transanal endorectal pull through (TERPT). The aim of this study was to compare short- and mid-term complications of these two procedures in our patients with HD. METHODS: Retrospective data of 50 HD patients were analyzed. Of these patients, 25 underwent RB (2000-2006) and in 25 the TERPT was performed (2005-2009). Medical records were reviewed to score complications and outcomes. Differences were analyzed using Chi-Square and Mann-Whitney U tests. RESULTS: All RB patients (100%) were given a colostomy compared with four patients (16%) in the TERPT group (p < 0.001). The average age at surgery in the RB group was 191 days whereas this was 72 days in the TERPT group (p < 0.01). The mean length of time of surgery in the RB group (158 min) was not significantly different from that in the TERPT group (183 min). Ganglion cells were located in all specimens at the proximal end of the specimens. The median time to first feeding significantly decreased from 2 days (range 1-11) in the RB group to 1 day (range 1-3) in the TERPT group (p < 0.01). The median length of hospital stay decreased in the TERPT group (8 days) compared with the RB group (10 days) (p < 0.001). There was a significant reduction in postoperative obstructive symptoms during the first 6 months in the TERPT group (48%) compared with the RB group (84%) (p = 0.016). Postoperative enterocolitis decreased from 40% in the RB group to 24% in the TERPT group although this was not statistically significant. CONCLUSIONS: The introduction of TERPT reduced the need for colostomies; it shortened days to first feeding after surgery and reduced hospital stay. It also improved short-term outcome with less obstructive symptoms. We recommend TERPT surgery as a first choice in children with HD. we consider the RB now to be obsolete.1 november 201

    Common MicroRNA Signatures in Cardiac Hypertrophic and Atrophic Remodeling Induced by Changes in Hemodynamic Load

    Get PDF
    BACKGROUND: Mechanical overload leads to cardiac hypertrophy and mechanical unloading to cardiac atrophy. Both conditions produce similar transcriptional changes including a re-expression of fetal genes, despite obvious differences in phenotype. MicroRNAs (miRNAs) are discussed as superordinate regulators of global gene networks acting mainly at the translational level. Here, we hypothesized that defined sets of miRNAs may determine the direction of cardiomyocyte plasticity responses. METHODOLOGY/PRINCIPAL FINDINGS: We employed ascending aortic stenosis (AS) and heterotopic heart transplantation (HTX) in syngenic Lewis rats to induce mechanical overloading and unloading, respectively. Heart weight was 26±3% higher in AS (n = 7) and 33±2% lower in HTX (n = 7) as compared to sham-operated (n = 6) and healthy controls (n = 7). Small RNAs were enriched from the left ventricles and subjected to quantitative stem-loop specific RT-PCR targeting a panel of 351 miRNAs. In total, 153 miRNAs could be unambiguously detected. Out of 72 miRNAs previously implicated in the cardiovascular system, 40 miRNAs were regulated in AS and/or HTX. Overall, HTX displayed a slightly broader activation pattern for moderately regulated miRNAs. Surprisingly, however, the regulation of individual miRNA expression was strikingly similar in direction and amplitude in AS and HTX with no miRNA being regulated in opposite direction. In contrast, fetal hearts from Lewis rats at embryonic day 18 exhibited an entirely different miRNA expression pattern. CONCLUSIONS: Taken together, our findings demonstrate that opposite changes in cardiac workload induce a common miRNA expression pattern which is markedly different from the fetal miRNA expression pattern. The direction of postnatal adaptive cardiac growth does, therefore, not appear to be determined at the level of single miRNAs or a specific set of miRNAs. Moreover, miRNAs themselves are not reprogrammed to a fetal program in response to changes in hemodynamic load

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases
    corecore