16 research outputs found

    Protein profiling of the dimorphic, pathogenic fungus, Penicillium marneffei

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Penicillium marneffei </it>is a pathogenic fungus that afflicts immunocompromised individuals having lived or traveled in Southeast Asia. This species is unique in that it is the only dimorphic member of the genus. Dimorphism results from a process, termed phase transition, which is regulated by temperature of incubation. At room temperature, the fungus grows filamentously (mould phase), but at body temperature (37°C), a uninucleate yeast form develops that reproduces by fission. Formation of the yeast phase appears to be a requisite for pathogenicity. To date, no genes have been identified in <it>P. marneffei </it>that strictly induce mould-to-yeast phase conversion. In an effort to help identify potential gene products associated with morphogenesis, protein profiles were generated from the yeast and mould phases of <it>P. marneffei</it>.</p> <p>Results</p> <p>Whole cell proteins from the early stages of mould and yeast development in <it>P. marneffei </it>were resolved by two-dimensional gel electrophoresis. Selected proteins were recovered and sequenced by capillary-liquid chromatography-nanospray tandem mass spectrometry. Putative identifications were derived by searching available databases for homologous fungal sequences. Proteins found common to both mould and yeast phases included the signal transduction proteins cyclophilin and a RACK1-like ortholog, as well as those related to general metabolism, energy production, and protection from oxygen radicals. Many of the mould-specific proteins identified possessed similar functions. By comparison, proteins exhibiting increased expression during development of the parasitic yeast phase comprised those involved in heat-shock responses, general metabolism, and cell-wall biosynthesis, as well as a small GTPase that regulates nuclear membrane transport and mitotic processes in fungi. The cognate gene encoding the latter protein, designated <it>RanA</it>, was subsequently cloned and characterized. The <it>P. marneffei </it>RanA protein sequence, which contained the signature motif of Ran-GTPases, exhibited 90% homology to homologous <it>Aspergillus </it>proteins.</p> <p>Conclusion</p> <p>This study clearly demonstrates the utility of proteomic approaches to studying dimorphism in <it>P. marneffei</it>. Moreover, this strategy complements and extends current genetic methodologies directed towards understanding the molecular mechanisms of phase transition. Finally, the documented increased levels of RanA expression suggest that cellular development in this fungus involves additional signaling mechanisms than have been previously described in <it>P. marneffei</it>.</p

    Initial clinical experience of an ultrasonic strain imaging system with novel noise-masking capability.

    No full text
    Quasistatic strain imaging is a form of elastography that can produce qualitative images of tissue stiffness with only software modifications to conventional ultrasound hardware. Unlike current commercial offerings, the novel strain-imaging system that is the subject of this paper displays regions of signal decorrelation using an overlaid colour mask and can also produce three-dimensional (3D) strain images. In illustrative studies of the breast, testis and thyroid, the colour mask is seen to reduce the potential to misinterpret noise as meaningful stiffness information, and also helps to differentiate cystic and solid lesions. High-quality imaging of the testis in vivo demonstrates that 3D strain imaging is feasible

    The Influence of High-Impact Exercise on Cortical and Trabecular Bone Mineral Content and 3D Distribution Across the Proximal Femur in Older Men: A Controlled Unilateral Intervention Randomized

    No full text
    Regular exercisers have lower fracture risk, despite modest effects of exercise on bone mineral content (BMC). Exercise may produce localized cortical and trabecular bone changes that affect bone strength independently of BMC. We previously demonstrated that brief, daily unilateral hopping exercises increased femoral neck BMC in the exercise leg versus the control leg of older men. This study evaluated the effects of these exercises on cortical and trabecular bone and its 3D distribution across the proximal femur, using clinical CT. Fifty healthy men had pelvic CT scans before and after the exercise intervention. We used hip QCT analysis to quantify BMC in traditional regions of interest and estimate biomechanical variables. Cortical bone mapping localized cortical mass surface density and endocortical trabecular density changes across each proximal femur, which involved registration to a canonical proximal femur model. Following statistical parametric mapping, we visualized and quantified statistically significant changes of variables over time in both legs, and significant differences between legs. Thirty-four men aged mean (SD) 70 (4) years exercised for 12-months, attending 92% of prescribed sessions. In traditional regions of interest, cortical and trabecular BMC increased over time in both legs. Cortical BMC at the trochanter increased more in the exercise than control leg, whereas femoral neck buckling ratio declined more in the exercise than control leg. Across the entire proximal femur, cortical mass surface density increased significantly with exercise (2.7%; p 6%) at anterior and posterior aspects of the femoral neck and anterior shaft. Endocortical trabecular density also increased (6.4%; p 12% at the anterior femoral neck, trochanter, and inferior femoral head. Odd impact exercise increased cortical mass surface density and endocortical trabecular density, at regions that may be important to structural integrity. These exercise-induced changes were localized rather than being evenly distributed across the proximal femur. © 2015 American Society for Bone and Mineral Research

    The influence of high-impact exercise on cortical and trabecular bone mineral content and 3D distribution across the proximal femur in older men: A randomized controlled unilateral intervention

    No full text
    Regular exercisers have lower fracture risk, despite modest effects of exercise on bone mineral content (BMC). Exercise may produce localized cortical and trabecular bone changes that affect bone strength independently of BMC. We previously demonstrated that brief, daily unilateral hopping exercises increased femoral neck BMC in the exercise leg versus the control leg of older men. This study evaluated the effects of these exercises on cortical and trabecular bone and its 3D distribution across the proximal femur, using clinical CT. Fifty healthy men had pelvic CT scans before and after the exercise intervention. We used hip QCT analysis to quantify BMC in traditional regions of interest and estimate biomechanical variables. Cortical bone mapping localized cortical mass surface density and endocortical trabecular density changes across each proximal femur, which involved registration to a canonical proximal femur model. Following statistical parametric mapping, we visualized and quantified statistically significant changes of variables over time in both legs, and significant differences between legs. Thirty-four men aged mean (SD) 70 (4) years exercised for 12-months, attending 92% of prescribed sessions. In traditional regions of interest, cortical and trabecular BMC increased over time in both legs. Cortical BMC at the trochanter increased more in the exercise than control leg, whereas femoral neck buckling ratio declined more in the exercise than control leg. Across the entire proximal femur, cortical mass surface density increased significantly with exercise (2.7%; p 6%) at anterior and posterior aspects of the femoral neck and anterior shaft. Endocortical trabecular density also increased (6.4%; p 12% at the anterior femoral neck, trochanter, and inferior femoral head. Odd impact exercise increased cortical mass surface density and endocortical trabecular density, at regions that may be important to structural integrity. These exercise-induced changes were localized rather than being evenly distributed across the proximal femur

    Ultrasound technology for examining the mechanics of the muscle, tendon, and ligament

    No full text
    Ultrasound imaging provides a means to look inside the body and examine how tissues respond to mechanical stress or muscle contraction. As such, it can provide a valuable tool for understanding how muscle, tendon, and ligament mechanics influence the way we move, or vice versa, in health and disease, or to understand how and why these tissues might get injured due to chronic or acute loading. This chapter explores the basic concepts of ultrasound and how it can be used to examine muscle, tendon, and ligament structure and mechanical function. It introduces different techniques, like conventional B-mode imaging, threedimensional ultrasound, and various forms of elastography that can be used to quantify geometrical and mechanical properties of the muscle, tendon, and ligament. Furthermore, methods to quantify muscle and tendon mechanical function during dynamic human movement are explored, and recommendations provided on which techniques are most suitable for different biomechanical investigations. Finally, some predictions about how new ultrasound imaging technologies might continue to advance our understanding of human motion are proposed and explored
    corecore