5 research outputs found

    An off-board quantum point contact as a sensitive detector of cantilever motion

    Full text link
    Recent advances in the fabrication of microelectromechanical systems (MEMS) and their evolution into nanoelectromechanical systems (NEMS) have allowed researchers to measure extremely small forces, masses, and displacements. In particular, researchers have developed position transducers with resolution approaching the uncertainty limit set by quantum mechanics. The achievement of such resolution has implications not only for the detection of quantum behavior in mechanical systems, but also for a variety of other precision experiments including the bounding of deviations from Newtonian gravity at short distances and the measurement of single spins. Here we demonstrate the use of a quantum point contact (QPC) as a sensitive displacement detector capable of sensing the low-temperature thermal motion of a nearby micromechanical cantilever. Advantages of this approach include versatility due to its off-board design, compatibility with nanoscale oscillators, and, with further development, the potential to achieve quantum limited displacement detection.Comment: 5 pages, 5 figure

    New Test of Local Lorentz Invariance Using a Ne-21-Rb-K Comagnetometer

    No full text
    We develop a new comagnetometer using Ne-21 atoms with nuclear spin I = 3/2 and Rb atoms polarized by spin exchange with K atoms to search for tensor interactions that violate local Lorentz invariance. We frequently reverse the orientation of the experiment and search for signals at the first and second harmonics of the sidereal frequency. We constrain 4 of the 5 spatial Lorentz-violating coefficients c(jk)(n) that parametrize anisotropy of the maximum attainable velocity of a neutron at a level of 10(-29), improving previous limits by 2 to 4 orders of magnitude and placing the most stringent constraint on deviations from local Lorentz invariance

    8 Taurine

    No full text
    corecore