2,258 research outputs found

    Pre-screening of filamentous fungi isolated from a contaminated site in Southern Brazil for bioaugmentation purposes

    Get PDF
    Four Aspergillus sp. strains were isolated from contaminated soil in Rio Grande, Southern Brazil. The biodegradation potential of these strains was evaluated using a simple method involving the determination of colony growth rates on plates containing a specific hydrocarbon or petroleumderivative as the only carbon source. The LEBM1 strain presented a high tolerance level to BTX. It was the only strain capable of growth on all the media, with growth rates varying from 1.3 to 2.2 mm/day. The LEBM2 strain presented the potential for phenol degradation, while the LEBM3 strain could be used for gasoline, diesel oil, hexane and chlorobenzene

    Different cell disruption methods for astaxanthin recovery by Phaffia rhodozyma

    Get PDF
    Astaxanthin (3,3'-dihydroxy-b,b'-carotene-4,4'-dione) is carotenoid of high market value whose demand has increased in such fields as aquaculture, pharmaceutical supplements and natural coloring. Cell disruption is the first step for isolating intracellular materials and it depends on the cell wall permeability. In order to maximize the  recovery of astaxanthin from Phaffia rhodozyma NRRL-Y17268, drying and freeze pretreatments were tested by different cell disruption methods: abrasion with celite, glass pearls in vortex agitator, ultrasonic waves, sodium  carbonate (Na2CO3) and dimethyl sulfoxide (DMSO). The method with Na2CO3 was not effective; meanwhile, the agitator with glass pearls, the abrasion with celite and the ultrasonic waves were found as promising for future  studies. As a result, the DMSO in freeze-dried biomass with 4 process cycles and biomass/DMSO relation of 0.025 g/ml was found to be the most efficient for analytical determination, increasing about up to 25 times the astaxanthin recovery.Key words: Carotenoids, yeast, chemical disruption, dimethyl sulfoxide

    Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic α and β cells

    Get PDF
    This is the final version of the article. Available from eLife Sciences Publications via the DOI in this record.Type 1 diabetes (T1D) is an autoimmune disease caused by loss of pancreatic β cells via apoptosis while neighboring α cells are preserved. Viral infections by coxsackieviruses (CVB) may contribute to trigger autoimmunity in T1D. Cellular permissiveness to viral infection is modulated by innate antiviral responses, which vary among different cell types. We presently describe that global gene expression is similar in cytokine-treated and virus-infected human islet cells, with up-regulation of gene networks involved in cell autonomous immune responses. Comparison between the responses of rat pancreatic α and β cells to infection by CVB5 and 4 indicate that α cells trigger a more efficient antiviral response than β cells, including higher basal and induced expression of STAT1-regulated genes, and are thus better able to clear viral infections than β cells. These differences may explain why pancreatic β cells, but not α cells, are targeted by an autoimmune response during T1D.Fonds De La Recherche Scientifique – FNRS: FNRS- F 5/4/5.MCF/KP. Project de secherche (PDR) T.0036.13; European Commission (EC): Projects Naimit and BetaBat, in the Framework Programme 7 of the European Community; Federation Wallonie- Bruxelles: the Communaute Franc¸ aise de BelgiqueActions de Recherche Concertees (ARC); Fonds De La Recherche Scientifique – FNRS: FNRS post-doctoral fellowship; Governo Brasil: PDE/CSF Pos-Doutorado no Exterior; Juvenile Diabetes Research Foundation International (JDRF): JDRF Career Development Award; European Commission (EC): European Union’s Seventh Framework Programme [FP7/2007-2013] under grant agreement 261441 PEVNE

    Ni−Fe (Oxy)hydroxide Modified Graphene Additive Manufactured (3D-Printed) Electrochemical Platforms as an Efficient Electrocatalyst for the Oxygen Evolution Reaction

    Get PDF
    © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim We demonstrate that polylactic acid (PLA)/graphene additive manufactured (3D-printed) electrodes (Gr/AMEs) electrodeposited with Ni−Fe (oxy)hydroxide can efficiently catalyse the oxygen evolution reaction (OER). X-ray photoelectron spectroscopy (XPS) depth profiling combined with Atomic Force Microscopy (AFM) and Tip Enhanced Raman Spectroscopy (TERS) deduced the composition and depth of the Ni−Fe (oxy)hydroxide layer. The composition of the resulting electrocatalytic surfaces are tailored through altering the concentrations of nickel and iron within the electrodeposited solutions, which give rise to optimised AMEs OER performance (within 0.1 M KOH). The optimal OER performance was observed from a Ni−Fe (oxy)hydroxide with a 10 % content of Fe, which displayed an OER onset potential and overpotential of+1.47 V (vs. RHE) and 519 mV, respectively. These values arecomparable to that of polycrystalline Iridium (+ 1.43 V (vs. RHE) and ca. 413 mV), as well as being significantly less electropositive than a bare/unmodified AME. This work is essential for those designing, fabricating and modulating additive manufactured electrodes

    Are isomeric alkenes used in species recognition among neo-tropical stingless bees (Melipona spp)

    Get PDF
    The majority of our understanding of the role of cuticular hydrocarbons (CHC) in recognition is based largely on temperate ant species and honey bees. The stingless bees remain relatively poorly studied, despite being the largest group of eusocial bees, comprising more than 400 species in some 60 genera. The Meliponini and Apini diverged between 80-130 Myr B.P. so the evolutionary trajectories that shaped the chemical communication systems in ants, honeybees and stingless bees may be very different. Therefore, the main aim of this study was to study if a unique species CHC signal existed in Neotropical stingless bees, as shown for many temperate species, and if so what compounds are involved. This was achieved by collecting CHC data from 24 colonies belonging to six species of Melipona from North-eastern Brazil and comparing this new data with all previously published CHC studies on Melipona. We found that each of the eleven Melipona species studied so far each produced a unique species CHC signal based around their alkene isomer production. A remarkable number of alkene isomers, up to 25 in M. asilvai, indicated the diversification of alkene positional isomers among the stingless bees. The only other group to have really diversified in alkene isomer production are the primitively eusocial Bumblebees (Bombus spp), which are the sister group of the stingless bees. Furthermore, among the eleven Neotropical Melipona species we could detect no effect of the environment on the proportion of alkane production as has been suggested for some other species

    The gene-reduction effect of chromosomal losses detected in gastric cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The level of loss of heterozygosity (LOH) that reduces a gene dose and exerts a cell-adverse effect is known to be a parameter for the genetic staging of gastric cancers. This study investigated if the cell-adverse effect induced with the gene reduction was a rate-limiting factor for the LOH events in two distinct histologic types of gastric cancers, the diffuse- and intestinal-types.</p> <p>Methods</p> <p>The pathologic specimens obtained from 145 gastric cancer patients were examined for the level of LOH using 40 microsatellite markers on eight cancer-associated chromosomes (3p, 4p, 5q, 8p, 9p, 13q, 17p and 18q).</p> <p>Results</p> <p>Most of the cancer-associated chromosomes were found to belong to the gene-poor chromosomes and to contain a few stomach-specific genes that were highly expressed. A baseline-level LOH involving one or no chromosome was frequent in diffuse-type gastric cancers. The chromosome 17 containing a relatively high density of genes was commonly lost in intestinal-type cancers but not in diffuse-type cancers. A high-level LOH involving four or more chromosomes tended to be frequent in the gastric cancers with intestinal and mixed differentiation. Disease relapse was common for gastric cancers with high-level LOH through both the hematogenous (38%) and non-hematogenous (36%) routes, and for the baseline-level LOH cases through the non-hematogenous route (67%).</p> <p>Conclusions</p> <p>The cell-adverse effect of gene reduction is more tolerated in intestinal-type gastric cancers than in diffuse-type cancers, and the loss of high-dose genes is associated with hematogenous metastasis.</p

    Structural modification of TiO2 nanorod films with an influence on the photovoltaic efficiency of a dye-sensitized solar cell (DSSC)

    Get PDF
    TiO2 nanorod films have been deposited on ITO substrates by dc reactive magnetron sputtering technique. The structures of these nanorod films were modified by the variation of the oxygen pressure during the sputtering process. Although all these TiO2 nanorod films deposited at different oxygen pressures show an anatase structure, the orientation of the nanorod films varies with the oxygen pressure. Only a very weak (101) diffraction peak can be observed for the TiO2 nanorod film prepared at low oxygen pressure. However, as the oxygen pressure is increased, the (220) diffraction peak appears and the intensity of this diffraction peak is increased with the oxygen pressure. The results of the SEM show that these TiO2 nanorods are perpendicular to the ITO substrate. At low oxygen pressure, these sputtered TiO2 nanorods stick together and have a dense structure. As the oxygen pressure is increased, these sputtered TiO2 nanorods get separated gradually and have a porous structure. The optical transmittance of these TiO2 nanorod films has been measured and then fitted by OJL model. The porosities of the TiO2 nanorod films have been calculated. The TiO2 nanorod film prepared at high oxygen pressure shows a high porosity. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorod films prepared at different oxygen pressures as photoelectrode. The optimum performance was achieved for the DSSC using the TiO2 nanorod film with the highest (220) diffraction peak and the highest porosity
    • …
    corecore