54 research outputs found

    A comparison of Power Doppler with conventional sonographic imaging for the evaluation of renal artery stenosis

    Get PDF
    BACKGROUND: Power Doppler (PD) has improved diagnostic capabilities of vascular sonography, mainly because it is independent from the angle of insonation. We evaluated this technique in a prospective comparison with conventional imaging, consisting in Duplex and Color Doppler, for the evaluation of Renal Artery (RA) stenosis. METHODS: Sensitivity, specificity and predictive values of PD and conventional imaging were assessed in a blinded fashion on eighteen patients, 9 with angiographic evidence of unilateral RA stenosis (hypertensive patients) and 9 with angiographically normal arteries (control group). PD images were interpreted with an angiography-like criteria. RESULTS: In the control group both techniques allowed correct visualization of 16 out of the 18 normal arteries (93% specificity). Only in five hypertensive patients RA stenosis was correctly identified with conventional technique (56% sensitivity and 86% negative predictive value); PD was successful in all hypertensive patients (100% sensitivity and negative predictive value), since the operators could obtain in each case of RA stenosis a sharp color signal of the whole vessel with a clear "minus" at the point of narrowing of the lumen. All results were statistically significant (p < 0.01). CONCLUSIONS: This study demonstrates that PD is superior to conventional imaging, in terms of sensitivity and specificity, for the diagnosis of RA stenosis, because it allows a clear visualization of the whole stenotic vascular lumen. Especially if it is used in concert with the other sonographic techniques, PD can enable a more accurate imaging of renovascular disease with results that seem comparable to selective angiography

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems

    Classifying the evolutionary and ecological features of neoplasms

    Get PDF
    The consensus conference was supported by Wellcome Genome Campus Advanced Courses and Scientific Conferences. C.C.M. is supported in part by US NIH grants P01 CA91955, R01 CA149566, R01 CA170595, R01 CA185138 and R01 CA140657 as well as CDMRP Breast Cancer Research Program Award BC132057. M.J. is supported by NIH grant K99CA201606. K.S.A. is supported by NCI 5R21 CA196460. K. Polyak is supported by R35 CA197623, U01 CA195469, U54 CA193461, and the Breast Cancer Research Foundation. K.J.P. is supported by NIH grants CA143803, CA163124, CA093900 and CA143055. D.P. is supported by the European Research Council (ERC-617457- PHYLOCANCER), the Spanish Ministry of Economy and Competitiveness (BFU2015-63774-P) and the Education, Culture and University Development Department of the Galician Government. K.S.A. is supported in part by the Breast Cancer Research Foundation and NCI R21CA196460. C.S. is supported by the Royal Society, Cancer Research UK (FC001169), the UK Medical Research Council (FC001169), and the Wellcome Trust (FC001169), NovoNordisk Foundation (ID 16584), the Breast Cancer Research Foundation (BCRF), the European Research Council (THESEUS) and Marie Curie Network PloidyNet. T.A.G. is a Cancer Research UK fellow and a Wellcome Trust funded Investigator. E.S.H. is supported by R01 CA185138-01 and W81XWH-14-1-0473. M.Gerlinger is supported by Cancer Research UK and The Royal Marsden/ICR National Institute of Health Research Biomedical Research Centre. M.Ge., M.Gr., Y.Y., and A.So. were also supported in part by the Wellcome Trust [105104/Z/14/Z]. J.D.S. holds the Edward B. Clark, MD Chair in Pediatric Research, and is supported by the Primary Children's Hospital (PCH) Pediatric Cancer Research Program, funded by the Intermountain Healthcare Foundation and the PCH Foundation. A.S. is supported by the Chris Rokos Fellowship in Evolution and Cancer. Y.Y. is a Cancer Research UK fellow and supported by The Royal Marsden/ICR National Institute of Health Research Biomedical Research Centre. E.S.H. was supported in part by PCORI grants 1505–30497 and 1503–29572, NIH grants R01 CA185138, T32 CA093245, and U10 CA180857, CDMRP Breast Cancer Research Program Award BC132057, a CRUK Grand Challenge grant, and the Breast Cancer Research Foundation. A.R.A.A. was funded in part by NIH grant U01CA151924. A.R.A.A., R.G. and J.S.B. were funded in part by NIH grant U54CA193489

    Identification and inhibition of carbonic anhydrases from nematodes

    Full text link
    Carbonic anhydrases (CAs) are metalloenzymes, and classified into the evolutionarily distinct α, β, γ, δ, ζ, and η classes. α-CAs are present in many living organisms. β- and γ-CAs are expressed in most prokaryotes and eukaryotes, except for vertebrates. δ- and ζ-CAs are present in phytoplanktons, and η-CAs have been found in Plasmodium spp. Since the identification of α- and β-CAs in Caenorhabditis elegans, the nematode CAs have been considered as an emerging target in research focused on antiparasitic CA inhibitors. Despite the presence of α-CAs in both helminths and vertebrates, structural studies have revealed different kinetic and inhibition results. Moreover, lack of β-CAs in vertebrates makes this enzyme as an attractive target for inhibitory studies against helminthic infection. Some CA inhibitors, such as sulfonamides, have been evaluated against nematode CAs. This review article aims to present comprehensive information about the nematode CAs and their inhibitors as potential anthelminthic drugs

    Ultimate and proximate mechanisms of reciprocal altruism in rats

    Full text link
    The reciprocal exchange of goods and services among social partners is a conundrum in evolutionary biology because of its proneness to cheating, but also the behavioral and cognitive mechanisms involved in such mutual cooperation are hotly debated. Extreme viewpoints range from the assumption that, at the proximate level, observed cases of "direct reciprocity" can be merely explained by basic instrumental and Pavlovian association processes, to the other extreme implying that "cultural factors" must be involved, as is often attributed to reciprocal cooperation among humans. Here we argue that neither one nor the other extreme conception is likely to explain proximate mechanisms underlying reciprocal altruism in animals. In particular, we outline that Pavlovian association processes are not sufficient to explain the documented reciprocal cooperation among Norway rats, as has been recently argued
    corecore