4 research outputs found

    Uterine artery pseudoaneurysm requiring embolization in pregnancy: a case report and review of the literature.

    Get PDF
    Background: Uterine Artery Pseudoaneurysm is a rare cause of pelvic pain and haemorrhage in pregnancy. It should be considered in the differential diagnosis of pregnant women presenting with abdominal pain and is readily diagnosed by colour Doppler ultrasound. If left untreated, they may bleed into the peritoneum causing severe pain and haemorrhagic shock and may progress to maternal and fetal death. Case presentation: We describe a case of a woman presenting with severe right iliac fossa pain at 26 weeks gestation attributed to a right uterine artery pseudoaneurysm diagnosed on duplex ultrasound which was successfully treated by uterine artery embolization at 28 weeks gestation without complication to the fetus. Conclusion: Uterine artery embolization appears to be a safe and effective method to treat pseudoaneurysm during pregnancy without compromising uteroplacental perfusion

    Recovery of a high-pressure phase formed under laser-driven compression

    No full text
    The recovery of metastable structures formed at high pressure has been a long-standing goal in the field of condensed matter physics. While laser-driven compression has been used as a method to generate novel structures at high pressure, to date no high-pressure phases have been quenched to ambient conditions. Here we demonstrate, using in situ x-ray diffraction and recovery methods, the successful quench of a high-pressure phase which was formed under laser-driven shock compression. We show that tailoring the pressure release path from a shock-compressed state to eliminate sample spall, and therefore excess heating, increases the recovery yield of the high-pressure ω phase of zirconium from 0% to 48%. Our results have important implications for the quenchability of novel phases of matter demonstrated to occur at extreme pressures using nanosecond laser-driven compression
    corecore