6 research outputs found

    The endoplasmic reticulum stress marker CHOP predicts survival in malignant mesothelioma.

    Get PDF
    BACKGROUND: Mesothelioma is an incurable cancer originating from the mesothelial cells that line the pleural, peritoneal and pericardial cavities. These cells synthesise large quantities of surface glycoproteins, rendering them dependent upon efficient endoplasmic reticulum (ER) function. When faced with elevated levels of secretory protein load, cells are said to experience ER stress, which has been implicated in the pathogenesis of many human diseases including cancer. METHOD: We set out to measure markers of ER stress in malignant mesothelioma and to determine whether ER stress signalling correlates with clinical parameters. RESULTS: We observed that expression of the ER stress-responsive transcription factor C/EBP homologous protein (CHOP) correlated with patient survival and remained an independent prognostic variable in pairwise comparisons with all clinical variables tested. The most parsimonious multivariate model in our study comprised only performance status and CHOP staining. In contrast, expression of the ER stress-responsive phosphatase growth arrest and DNA damage 34 (GADD34) correlated with the degree of mesothelial differentiation, being lost progressively in biphasic and sarcomatoid mesotheliomas. CONCLUSION: Our findings suggest that staining for CHOP provides prognostic information that may be useful in the stratification of patients with mesothelioma. Staining for GADD34 may prove useful in classification of mesothelioma histopathology

    The ER stress transducer IRE1β is required for airway epithelial mucin production

    No full text
    Inflammation of human bronchial epithelia (HBE) activates the endoplasmic reticulum (ER) stress transducer inositolrequiring enzyme 1 (IRE1)α, resulting in IRE1α-mediated cytokine production. Previous studies demonstrated ubiquitous expression of IRE1α and gut-restricted expression of IRE1β.We found that IRE1β is also expressed in HBE, is absent in human alveolar cells, and is upregulated in cystic fibrosis and asthmatic HBE. Studies with Ire1β(−/−) mice and Calu-3 airway epithelia exhibiting IRE1β knockdown or overexpression revealed that IRE1β is expressed in airway mucous cells, is functionally required for airway mucin production, and this function is specific for IRE1β vs. IRE1α. IRE1β-dependent mucin production is mediated, at least in part, by activation of the transcription factor X-box binding protein-1 (XBP-1) and the resulting XBP-1-dependent transcription of anterior gradient homolog 2, a gene implicated in airway and intestinal epithelial mucin production. These novel findings suggest that IRE1β is a potential mucous cell-specific therapeutic target for airway diseases characterized by mucin overproduction

    Therapeutic potential of ectopic olfactory and taste receptors

    No full text
    corecore